
A Comparison of Resampling Methods for Bootstrapping Triangle GLMs
By Thomas Hartl, Department of Mathematics, Bryant University, Smithfield, Rhode Island

Overview
Bootstrapping is often employed for quantifying the inherent

variability of development triangle GLMs. While easy to implement,
bootstrapping approaches frequently break down when dealing with
actual data sets.

Often this happens because linear rescaling leads to negative values
in the resampled incremental development data. Two alternative
methods are presented: split-linear rescaling, and limited Pareto
resampling.

Comparisons based on a VBA implementation show that the new
methods perform about the same or are more efficient than linear
rescaling.

Split-Linear Rescaling – Intuition
The intuitive idea behind split-linear rescaling is as follows: if the

standard Pearson residual rescaling procedure results in resampling
values that are below a given percentage, 𝜋𝑚𝑚𝑚, of the expected mean,
we split the standard Pearson residual resampling values into a lower
set and an upper set.

Next we “squeeze” the lower resampling values together, so that they
do no longer dip below the given percentage of the expected mean.
The “squeezing” operation does preserve the mean, but it will lower
the variance of the resampling distribution.

To offset this, we apply a mean preserving “expansion” operation to
the upper resampling values.

Split-Linear Rescaling – Formulas
Assume that the original resampling distribution, 𝒚∗, has 𝑚 data

values and mean 𝜇. We partition 𝒚∗ into two subsets, 𝒚𝒍∗ and 𝒚𝒖∗ , with 𝑞
and 𝑟 values, and means 𝜇𝑙 and 𝜇𝑢. The new distribution is given by

𝑦∗′ = �
𝜇𝑙 + 𝑐𝑙 𝑦∗ − 𝜇𝑙 , if 𝑦∗ ∈ 𝒚𝒍∗

𝜇𝑢 + 𝑐𝑢 𝑦∗ − 𝜇𝑢 , if 𝑦∗ ∈ 𝒚𝒖∗
.

The scaling factor for the lower set is given by

𝑐𝑙 =
𝜇𝑙 − 𝜋𝑚𝑚𝑚𝜇
𝜇𝑙 − 𝑦1∗

,

where 𝑦1∗ is the smallest value in 𝒚𝒍∗. The scaling factor for the upper set
is obtained by

𝑐𝑢 = 1 + 1 − 𝑐𝑙2
𝑞𝜎𝑦𝑙∗

2

𝑟𝜎𝑦𝑢∗
2 ,

where 𝜎𝑦𝑙∗
2 and 𝜎𝑦𝑢∗

2 are the variances of the lower and upper subsets.
Note that there are two situations in which this procedure does not

work. Firstly, we need a partition such that 𝜇𝑙 > 𝜋𝑚𝑚𝑚𝜇. Once we have
found that, we may discover that 𝜎𝑦𝑢∗

2 = 0. This means that all the values
in 𝒚𝒖∗ are the same (including the degenerate case where there are no
values in 𝒚𝒖∗). In this case we cannot expand the upper subset. Passing
the 𝜎𝑦𝑢∗

2 > 0 hurdle, however, still leaves open the possibility that the
procedure breaks down because 𝑦𝑢∗1

′ < 𝜋𝑚𝑚𝑚𝜇. This means that the
smallest value in 𝒚𝒖∗ gets mapped to a value below 𝜋𝑚𝑚𝑚𝜇, thus violating
the very constraint we wanted to satisfy by using split-linear rescaling.

So, split-linear resampling is no cure all, but it does significantly
expand the class of triangle GLMs that can be bootstrapped.

Linear Rescaling Often Breaks Down
While more general approaches utilizing different definitions of residuals are

discussed in the literature (e.g [1], [2], [3], and [6]), many practical applications
implement resampling procedures based on linear rescaling of Pearson residuals.

Using a notation similar to that adopted in [5] and [6], the key equation for
generating pseudo data is

𝑦∗ = 𝑦� + 𝜙𝜙 𝑦� ⋅ 𝑟,
where 𝑟 is a randomly chosen standardized residual.

At the same time GLMs for development triangles usually use the log link function
which requires that all data points have to be positive. Popular GLMs for development
triangles (such as the ODP model) often have a large dispersion factor, 𝜙, and small
incremental data values for mature development periods. This results in negative
resampling values. A detailed example of this is discussed in [3].

Split-Linear Rescaling – Implementation
The most tricky part is finding a suitable partition into 𝒚𝒍∗ and 𝒚𝒖∗ . At

worst one can check all possible partitions such that all elements of 𝒚𝒍∗
are strictly less than the elements of 𝒚𝒖∗ . This is not a concern from a
performance perspective, because it does not affect the application of
the method during the Monte Carlo resampling phase.

During the resampling iterations, split-linear rescaling differs only
slightly from regular linear rescaling:
1. There is an increased memory requirement because two sets of

rescaling parameters need to be maintained
2. There is an additional comparison to decide which set of rescaling

parameters needs to be used.

Limited Pareto Resampling

Performance – Resampling Only
Friedland Data

Starting test script at 7/10/2014 6:53:30 PM

Starting test of linear rescaling at 7/10/2014 6:53:30 PM
The current state of the RngStream "<default>":
Cg = {3868657861, 3805326431, 1882214433, 3305730503, 2989917098, 1133457997}

Starting 20 test runs with 5000 iterations of resampling triangle and future cells using linear Pearson
residual rescaling:

1.77;1.76;1.75;1.77;1.76;1.78;1.75;1.77;1.77;1.77;1.77;1.78;1.77;1.78;1.78;1.77;1.78;1.78;1.80;1.77;
The average time was 1.771 with a sample standard deviation of 1.29E-02.

Starting test of split-linear rescaling at 7/10/2014 6:54:06 PM
The current state of the RngStream "<default>":
Cg = {3868657861, 3805326431, 1882214433, 3305730503, 2989917098, 1133457997}

Starting 20 test runs with 5000 iterations of resampling triangle and future cells using split-linear residual
rescaling:

1.80;1.81;1.83;1.80;1.80;1.83;1.82;1.81;1.80;1.81;1.80;1.80;1.80;1.81;1.80;1.86;1.80;1.83;1.83;1.82;
The average time was 1.814 with a sample standard deviation of 1.51E-02.

Starting test of limited Pareto resampling at 7/10/2014 6:54:42 PM
The current state of the RngStream "<default>":
Cg = {3868657861, 3805326431, 1882214433, 3305730503, 2989917098, 1133457997}

Starting 20 test runs with 5000 iterations of resampling triangle and future cells using limited Pareto
resampling:

1.75;1.73;1.74;1.75;1.72;1.74;1.75;1.73;1.75;1.73;1.73;1.75;1.75;1.74;1.75;1.73;1.74;1.75;1.73;1.73;
The average time was 1.740 with a sample standard deviation of 1.01E-02.

Completed test script at 7/10/2014 6:55:17 PM

Performance – Full Bootstrap
Friedland Data

Staring test script at 7/10/2014 7:24:51 PM

Starting test of linear rescaling at 7/10/2014 7:24:51 PM
State of random number generator:
Ig = {3868657861, 3805326431, 1882214433, 3305730503, 3305730503, 1133457997}

 20 test runs with 5000 iterations of full bootstrap using linear Pearson residual rescaling:

13.70;13.71;13.85;13.91;13.87;13.91;13.91;13.74;13.77;13.70;13.66;13.82;13.73;13.68;13.71;13.71;13.82;
13.96;13.89;13.87;
Average values: time = 13.797 reserve = 74,876 st.err. outcome = 1,143

Starting test of split-linear rescaling at 7/10/2014 7:29:28 PM
State of random number generator:
Ig = {3868657861, 3805326431, 1882214433, 3305730503, 3305730503, 1133457997}

 20 test runs with 5000 iterations of full bootstrap using split-linear residual rescaling:

13.85;13.93;13.98;13.96;13.97;13.92;13.91;13.88;13.91;13.74;13.80;13.92;13.96;13.90;13.95;13.84;13.76;
13.74;13.77;13.73;
Average values: time = 13.871 reserve = 74,872 st.err. outcome = 1,142

Starting test of limited Pareto resampling at 7/10/2014 7:34:06 PM
State of random number generator:
Ig = {3868657861, 3805326431, 1882214433, 3305730503, 3305730503, 1133457997}

 20 test runs with 5000 iterations of full parametric bootstrap using limited Pareto distribution:

12.05;12.03;12.16;12.28;12.16;12.28;12.18;12.20;12.21;12.19;12.16;12.25;12.20;12.27;12.15;12.08;12.04;
12.03;12.12;12.03;
Average values: time = 12.154 reserve = 74,867 st.err. outcome = 1,133

Completed test script at 7/10/2014 7:38:10 PM

Performance Tests
The data set from Friedland was chosen because all three methods work for it. Two

test scripts were run: one to directly compare the time spent resampling, and one to
show the impact on running a full bootstrap (with model fit and reserve projection).

The data set from Taylor and Ashe demonstrates that split-linear rescaling and
limited Pareto resampling do extend the scope of bootstrapping methods. Only the full
bootstrap script was run in this case.

For all scripts only the time spent during the Monte Carlo iterations was measured
(i.e. time spent on initializing the data structures was excluded).

Performance – Full Bootstrap
Taylor and Ashe Data

Staring test script at 7/10/2014 10:06:46 PM

Starting test of split-linear rescaling at 7/10/2014 10:06:46 PM
State of RNG: Ig = {3692455944, 1366884236, 2968912127, 335948734, 335948734, 475798818}

 20 test runs with 5000 iterations of full bootstrap using split-linear residual rescaling:

16.6;16.6;16.6;16.6;16.4;16.6;16.6;16.6;16.6;16.6;16.6;16.6;16.6;16.6;16.7;16.7;16.6;16.6;16.5;16.6;
Average values: time = 16.600 reserve = 18,846,504 st.err. outcome = 3,002,492

Starting test of limited Pareto resampling at 7/10/2014 10:12:18 PM
State of RNG: Ig = {3692455944, 1366884236, 2968912127, 335948734, 335948734, 475798818}

 20 test runs with 5000 iterations of full parametric bootstrap using limited Pareto distribution:

14.4;14.4;14.4;14.5;14.4;14.6;14.5;14.5;14.6;14.5;14.5;14.6;14.4;14.5;14.5;14.5;14.4;14.3;14.4;14.4;
Average values: time = 14.466 reserve = 18,797,464 st.err. outcome = 2,904,446

Completed test script at 7/10/2014 10:17:08 P

Bibliography
[1] A. C. Davison and D. V. Hinkley, Bootstrap methods and their application.

Cambridge; New York, NY, USA: Cambridge University Press, 1997.
[2] P. D. England and R. J. Verrall, “Stochastic claims reserving in general insurance,”

British Actuarial Journal, vol. 8, no. 03, pp. 443–518, 2002.
[3] T. Hartl, “Bootstrapping generalized linear models for development triangles

using deviance residuals,” in CAS E–Forum Fall, 2010.
[4] T. Hartl, “GLMs for Incomplete Development Triangles,” presented at the 2013

Casualty Loss Reserving Seminar, 2013.
[5] P. McCullagh and J. A. Nelder, Generalized linear models. London; New York:

Chapman and Hall, 1989.
[6] P. J. R. Pinheiro, J. M. A. e Silva, and M. de L. Centeno, “Bootstrap Methodology in

Claim Reserving,” The Journal of Risk and Insurance, vol. 70, no. 4, pp. 701–714,
Dec. 2003.

US Industry Auto Paid Claims ($M) Data from Taylor and Ashe (1983)
Incremental Input Values

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 18,539 14,692 6,831 3,830 2,004 869 456 226 109 89

2 20,410 15,680 7,169 3,900 2,049 954 464 253 122

3 22,121 16,855 7,413 4,173 2,173 1,005 544 249

4 22,992 17,104 7,672 4,326 2,270 1,015 500

5 24,093 17,703 8,108 4,449 2,401 1,053

6 24,084 17,315 7,671 4,514 2,346

7 24,370 17,120 7,747 4,538

8 25,101 17,602 7,943

9 25,609 17,998

10 27,230

Taken from J. Friedland, Estimating Unpaid Claims Using Basic Techniques, page 107.

A copy of the VBA for Excel application used to generate the results presented is available at request. Contact “Thomas Hartl” <thartl@bryant.edu>. All questions and feedback are welcome.

Incremental Input Values
Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014

This data set has been used as a benchmark by multiple authors, e.g. table 1 in [6]

An alternative to the messiness of rescaling residuals is to use parametric
resampling: we postulate that pseudo-data can be sampled from a
distribution that has a mean variance-relationship in line with our model
assumptions. As it turns out, a shifted and limited Pareto distribution with a
Pareto index of one is easy to work with from a computational point of view.
The CDF is given by

𝐹 𝑥 = �
0 𝑥 + 𝑐 < 𝑎

1 −
𝑎

𝑥 + 𝑐
𝑎 ≤ 𝑥 + 𝑐 < 𝑏

1 𝑏 ≤ 𝑥 + 𝑐

.

Note that 𝑃 𝑋 = 𝑏 − 𝑐 = 𝑎
𝑏⁄ (i.e. there is probability mass).

The mean and variance are given by

𝐸 𝑋 = 𝑎 1 − ln
𝑎
𝑏

− 𝑐, 𝜙𝑎𝑟 𝑋 = 2𝑎𝑏 − 𝑎2 − 𝑎2 1 − ln
𝑎
𝑏

2
.

For robust simulations it is desirable for 𝑎 𝑏⁄ not to be too small. One
strategy for finding suitable parameters 𝑎, 𝑏, 𝑐 is to solve 𝑎 𝑏⁄ = 0.001,
𝐸 𝑋 = 𝜇, and 𝜙𝑎𝑟 𝑋 = 𝜙 𝜇 . Note that this system of equations can be
solved in closed form. Often the solution will satisfy 𝑎 − 𝑐 ≥ 𝜋𝑚𝑚𝑚𝜇.

If the first strategy fails, we solve 𝑎 − 𝑐 = 𝜋𝑚𝑚𝑚𝜇, 𝐸 𝑋 = 𝜇, and
𝜙𝑎𝑟 𝑋 = 𝜙 𝜇 . This system of equations does not have a closed form
solution, but it can readily be solved numerically using the Newton-Raphson
method (we combine this with the bisection method for increased stability).

Once the 𝑎, 𝑏, 𝑐 parameters have been determined for each cell of our
triangle GLM, sampling from the distribution during the Monte Carlo phase
can efficiently be accomplished by the inverse transform method. Given a
uniform random number, 𝑢, we generate 𝑥 by

𝑥 = �
𝑏 − 𝑐 𝑢 ≤

𝑎
𝑏

𝑎
𝑢
− 𝑐

𝑎
𝑏

< 𝑢
.

At least in VBA for Excel this is actually more efficient than linear
rescaling. The reason is that 𝑢 is used directly (division operation), whereas
for linear rescaling 𝑢 needs to be converted to an index that is used to
access the needed standardized residual (multiplication plus array access).

	Slide Number 1

