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Fundamental problem in Finance/Insurance

Risk factors: X = (X1, . . . ,Xd)

Model assumption: Xi ∼ Fi, Fi known, i = 1, . . . , d

A financial position Ψ(X)

A risk measure/pricing function: ρ(Ψ(X))

Calculate ρ(Ψ(X))
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Calculating ρ(Ψ(X))

Example:

Ψ(X) =
∑d

i=1 Xi

ρ = VaRp or ρ = ESp

Challenge:

We need a joint model for the random vector X

Joint models are hard to get by

We will focus on the above special choices of Ψ and ρ.
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VaR and ES

VaRp(X)

For p ∈ (0, 1),

VaRp(X) = F−1
X (p) = inf{x ∈ R : FX(x) ≥ p}

ESp(X)

For p ∈ (0, 1),

ESp(X) =
1

1− p

∫ 1

p
VaRq(X)dq =

(F cont.)
E
[
X|X > VaRp(X)

]
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VaR and ES

A related quantity Left-tail-ES:

LESp(X)

For p ∈ (0, 1),

LESp(X) =
1
p

∫ p

0
VaRq(X)dq = −ES1−p(−X)
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Fréchet problem

Denote

Sd = Sd(F1, . . . ,Fd) =

{
d∑

i=1

Xi : Xi ∼ Fi, i = 1, . . . , d

}

Every element in Sd is a possible risk position.

Determination of Sd: very challenging.

Think about S2(U[0, 1],U[0, 1]) ... open question!
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Worst- and best-values of VaR and ES

The Fréchet (unconstrained) problems for VaRp

VaRp(Sd) = sup{VaRp(S) : S ∈ Sd(F1, . . . ,Fd)},

VaRp(Sd) = inf{VaRp(S) : S ∈ Sd(F1, . . . ,Fd)}.

Same notation for ESp and LESp.
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Worst- and best-values of VaR and ES

ES is subadditive:

ESp(Sd) =

d∑
i=1

ESp(Xi).

Similarly LESp(Sd) =
∑d

i=1 LESp(Xi).

VaRp(Sd), VaRp(Sd) and ESp(Sd): generally open questions

Challenge for ESp(Sd)

To calculate ESp(Sd) one naturally seeks a safest risk in Sd.
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Mathematical difficulty

Common understanding of the most dangerous scenario:

Comonotonicity - well accepted notion

Understanding concerning the safest scenario:

d = 2: counter-monotonicity

d ≥ 3: question mark! (?!)

Calls for notions of extremal negative dependence.
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Mathematical difficulty

ES respects convex order: the natural order of risk preference.

Convex order
We write X ≤cx Y if E[f (X)] ≤ E[f (Y)] for all convex functions f
such that the two expectations exist.

Finding ESp(Sd)

Search for a smallest element in Sd with respect to convex

order, if it exists.
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Mathematical difficulty

VaR does not respect convex order: more tricky

Good news: the questions for VaRp(Sd), VaRp(Sd) and

ESp(Sd) are mathematically similar.

Finding VaRp(Sd)

Search for a smallest element in Sd(F̂1, . . . , F̂d) with respect to

convex order, where F̂i is the p-tail-conditional distribution of

Fi.

VaRp(Sd) is symmetric to VaRp(Sd).
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Summary of existing results

d = 2:

fully solved analytically

d ≥ 3:

Homogeneous model (F1 = · · · = Fd)

ESp(Sd) solved analytically for decreasing densities, e.g.
Pareto, Exponential
VaRp(Sd) solved analytically for tail-decreasing densities,
e.g. Pareto, Gamma, Log-normal

Inhomogeneous model

Few analytical results: current research

Numerical methods available: Rearrangement Algorithm
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VaR bounds

d = 2, Makarov (1981) and Rüschendorf (1982)

For any p ∈ (0, 1),

VaRp(S2) = inf
x∈[0,1−p]

{F−1
1 (p + x) + F−1

2 (1− x)},

and

VaRp(S2) = sup
x∈[0,p]

{F−1
1 (x) + F−1

2 (p− x)}.

A large outcome is coupled with a small outcome.
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VaR bounds - homogeneous model

Sharp VaR bounds (Wang, Peng and Yang, 2013)

Suppose that the density function of F is decreasing on [b,∞)

for some b ∈ R. Then, for p ∈ [F(b), 1), and X d∼ F,

VaRp(Sd) = dE[X|X ∈ [F−1(p + (d− 1)c),F−1(1− c)]],

where c is the smallest number in [0, 1
d(1− p)] such that

∫ 1−c
p+(d−1)c F−1(t)dt ≥ 1−p−dc

d ((d− 1)F−1(p + (d− 1)c) + F−1(1− c)).

Red part clearly has an ES-type form.

c = 0: VaRp(Sd) = ESp(Sd).
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VaR bounds - homogeneous model

Sharp VaR bounds II

Suppose that the density function of F is decreasing on its

support. Then for p ∈ (0, 1) and X d∼ F,

VaRp(Sd) = max{(d− 1)F−1(0) + F−1(p), dE[X|X ≤ F−1(p)]}.

Red part has an LES form.
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ES bounds - homogeneous model

Sharp ES bounds (Bernard, Jiang and Wang, 2014)

Suppose that the density function of F is decreasing on its

support. Then for p ∈ (1− dc, 1), q = (1− p)/d and X d∼ F,

ESp(Sd) =
1
q

∫ q

0

(
(d− 1)F−1((d− 1)t) + F−1(1− t)

)
dt,

= (d− 1)2LES(d−1)q(X) + ES1−q(X),

where c is the smallest number in [0, 1
d ] such that

∫ 1−c
(d−1)c F−1(t)dt ≥ 1−dc

d ((d− 1)F−1((d− 1)c) + F−1(1− c)).

One large outcome is coupled with d− 1 small outcomes.

Paul Embrechts Risk Aggregation 17/33



Framework VaR and ES Bounds Asymptotic Equivalence Challenges References

Complete mixability

The homogeneous VaR and ES bounds are based on the notion

of complete mixability:

Complete mixability, Wang and Wang (2011)

A distribution function F on R is called d-completely mixable

(d-CM) if there exist d random variables X1, . . . ,Xd ∼ F such

that

P(X1 + · · ·+ Xd = dk) = 1,

for some k ∈ R.

Equivalently, Sd(F, . . . ,F) contains a constant.
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Complete mixability

Some examples of d-CM distributions for all d ≥ 2:

Normal, Student t, Cauchy, Uniform.

Most relevant result: F has a monotone density on a finite
interval with a mean condition (depends on d) is d-CM.

Examples: (truncated) Pareto, Gamma, Log-normal.

Inhomogeneous version called joint mixability.

A full characterization of these classses is at the moment is

widely open.
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Numerical calculation

Rearrangement Algorithm (RA): Embrecths, Puccetti and

Rüschendorf (2013).

A fast numerical procedure

Based on the CM-idea

Discretization of relevant quantile regions

d possibly large

Applicable to VaRp, VaRp and ESp
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Asymptotic equivalence

Consider the case d→∞. What would happen to VaRp(Sd)?

Clearly always VaRp(Sd) ≤ ESp(Sd).

Recall that VaRp(Sd) has an ES-type part.

Under some weak conditions,

lim
d→∞

ESp(Sd)

VaRp(Sd)
= 1.

This was shown first for homogeneous models and then

extended to general inhomogeneous models.
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Asymptotic equivalence - homogeneous model

Theorem 1
In the homogeneous model, F1 = F2 = · · · = F, for p ∈ (0, 1) and
X ∼ F, we have that

lim
d→∞

1
d

VaRp(Sd) = ESp(X).

Similar limits hold for a large class of risk measures
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Asymptotic equivalence - worst-cases

Theorem 2 (Embrechts, Wang and Wang, 2014)

Suppose the continuous distributions Fi, i ∈ N satisfy that for
Xi ∼ Fi and some p ∈ (0, 1),

(i) E[|Xi − E[Xi]|k] is uniformly bounded for some k > 1;

(ii) lim inf
d→∞

1
d

d∑
i=1

ESp(Xi) > 0.

Then as d→∞,

ESp(Sd)

VaRp(Sd)
= 1 + O(d1/k−1).
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Asymptotic equivalence - best-cases

Similar results holds for VaRp and ESp: assume (i) and

(iii) lim inf
d→∞

1
d

d∑
i=1

LESp(Xi) > 0,

then

lim
d→∞

VaRp(Sd)

LESp(Sd)
= 1,

lim
d→∞

ESp(Sd)∑d
i=1 E[Xi]

= 1,

and
VaRp(Sd)

ESp(Sd)
≈
∑d

i=1 LESp(Xi)∑d
i=1 E[Xi]

≤ 1, d→∞.
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Example: Pareto(2) risks

Bounds on VaR and ES for the sum of d Pareto(2) distributed rvs for
p = 0.999; VaR+

p corresponds to the comonotonic case.

d = 8 d = 56

VaRp 31 53

ESp 178 472

VaR+
p 245 1715

VaRp 465 3454

ESp 498 3486

VaRp/VaR+
p 1.898 2.014

ESp/VaRp 1.071 1.009
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Example: Pareto(θ) risks

Bounds on the VaR and ES for the sum of d = 8

Pareto(θ)-distributed rvs for p = 0.999.

θ = 1.5 θ = 2 θ = 3 θ = 5 θ = 10

VaRp 1897 465 110 31.65 9.72

ESp 2392 498 112 31.81 9.73

ESp/VaRp 1.261 1.071 1.018 1.005 1.001
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Dependence-uncertainty spread

Theorem 3 (Embrechts, Wang and Wang, 2014)

Take 1 > q ≥ p > 0. Suppose that the continuous distributions
Fi, i ∈ N, satisfy (i) and (iii), and lim supd→∞

∑d
i=1 E[Xi]∑d

i=1 ESp(Xi)
< 1, then

lim inf
d→∞

VaRq(Sd)− VaRq(Sd)

ESp(Sd)− ESp(Sd)
≥ 1.

The uncertainty spread of VaR is generally bigger than that

of ES.

In recent Consultative Documents of the Basel Committee,

VaR0.99 is compared with ES0.975: p = 0.975 and q = 0.99.
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Dependence-uncertainty spread

ES and VaR of Sd = X1 + · · ·+ Xd, where

Xi ∼ Pareto(2 + 0.1i), i = 1, . . . , 5;

Xi ∼ Exp(i− 5), i = 6, . . . , 10;

Xi ∼ Log–Normal(0, (0.1(i− 10))2), i = 11, . . . , 20.

d = 5 d = 20
best worst spread best worst spread

ES0.975 22.48 44.88 22.40 29.15 102.35 73.20
VaR0.975 9.79 41.46 31.67 21.44 100.65 79.21
VaR0.9875 12.06 56.21 44.16 22.12 126.63 104.51
VaR0.99 12.96 62.01 49.05 22.29 136.30 114.01

ES0.975

VaR0.975
1.08 1.02

Paul Embrechts Risk Aggregation 28/33



Framework VaR and ES Bounds Asymptotic Equivalence Challenges References

Challenges

Open mathematical questions:

Characterization of complete and joint mixability

Characterization of Sd

Find VaRp under more general settings, especially in the

inhomogeneous model

Partial dependence information and realistic scenarios

Marginal uncertainty and statistical estimation

Many more ...
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THANK YOU!
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