	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
0000				

On Solvency, Model Uncertainty and Risk Measures

Paul Embrechts

RiskLab, Department of Mathematics, ETH Zurich

Senior SFI Professor

www.math.ethz.ch/~embrechts/

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		00000000	0	0000
Outline				

- 2 VaR and ES Bounds
- 3 Asymptotic Equivalence

∃ → < ∃</p>

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
●0000		00000000	0	0000

Fundamental problem in Finance/Insurance

- Risk factors: $\mathbf{X} = (X_1, \dots, X_d)$
- Model assumption: $X_i \sim F_i$, F_i known, $i = 1, \ldots, d$
- A financial position $\Psi(\mathbf{X})$
- A risk measure/pricing function: $\rho(\Psi(\mathbf{X}))$

Calculate $\rho(\Psi(\mathbf{X}))$

Framework o●ooo	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References 0000
Calculatin	ng $ ho(\Psi(\mathbf{X}))$			

Example:

- $\Psi(\mathbf{X}) = \sum_{i=1}^{d} X_i$
- $\rho = \text{VaR}_p \text{ or } \rho = \text{ES}_p$

Challenge:

- We need a *joint* model for the random vector **X**
- Joint models are hard to get by

We will focus on the above special choices of Ψ and ρ .

Framework 00●00	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References 0000
VaR and	1 ES			

Va $\mathbb{R}_p(X)$ For $p \in (0, 1)$,

$$\operatorname{VaR}_p(X) = F_X^{-1}(p) = \inf\{x \in \mathbb{R} : F_X(x) \ge p\}$$

 $\begin{aligned} \mathrm{ES}_p(X) \\ \mathrm{For} \ p \in (0,1), \end{aligned}$

$$\mathrm{ES}_{p}(X) = \frac{1}{1-p} \int_{p}^{1} \mathrm{VaR}_{q}(X) \mathrm{d}q \underset{(F \text{ cont.})}{=} \mathbb{E}\left[X|X > \mathrm{VaR}_{p}(X)\right]$$

Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References 0000
VaR and	1 ES			

A related quantity Left-tail-ES:

 $LES_p(X)$

For $p \in (0, 1)$,

$$\operatorname{LES}_p(X) = \frac{1}{p} \int_0^p \operatorname{VaR}_q(X) \mathrm{d}q = -\operatorname{ES}_{1-p}(-X)$$

イロト イロト イヨト イヨト

00000	000000000000	0000000	0	0000	
Fréchet problem					

Denote

$$\mathcal{S}_d = \mathcal{S}_d(F_1, \dots, F_d) = \left\{ \sum_{i=1}^d X_i : X_i \sim F_i, \ i = 1, \dots, d \right\}$$

- Every element in S_d is a possible risk position.
- Determination of S_d : very challenging.
 - Think about $S_2(U[0,1], U[0,1])$... open question!

▲ 同 ▶ ▲ 国 ▶

VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
••••••			

Worst- and best-values of VaR and ES

The Fréchet (unconstrained) problems for VaR_p

$$\overline{\operatorname{VaR}}_p(S_d) = \sup\{\operatorname{VaR}_p(S) : S \in \mathcal{S}_d(F_1, \dots, F_d)\},\$$

$$\underline{\operatorname{VaR}}_p(S_d) = \inf \{ \operatorname{VaR}_p(S) : S \in \mathcal{S}_d(F_1, \dots, F_d) \}.$$

Same notation for ES_p and LES_p .

VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000000000			

Worst- and best-values of VaR and ES

• ES is subadditive:

$$\overline{\mathrm{ES}}_p(S_d) = \sum_{i=1}^d \mathrm{ES}_p(X_i).$$

Similarly $\underline{\text{LES}}_p(S_d) = \sum_{i=1}^d \text{LES}_p(X_i)$.

• $\overline{\text{VaR}}_p(S_d)$, $\underline{\text{VaR}}_p(S_d)$ and $\underline{\text{ES}}_p(S_d)$: generally open questions

Challenge for $\underline{ES}_p(S_d)$

To calculate $\underline{ES}_p(S_d)$ one naturally seeks a safest risk in S_d .

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		0000000	0	0000
Mathen	natical difficul	tv		

Common understanding of the most dangerous scenario:

J

• Comonotonicity - well accepted notion

Understanding concerning the safest scenario:

- *d* = 2: counter-monotonicity
- $d \ge 3$: question mark! (?!)
 - Calls for notions of extremal negative dependence.

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	000000000000		0	0000

Mathematical difficulty

ES respects convex order: the natural order of risk preference.

Convex order

We write $X \leq_{cx} Y$ if $\mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$ for all convex functions *f*

such that the two expectations exist.

Finding $\underline{\text{ES}}_p(S_d)$

Search for a smallest element in S_d with respect to convex

order, if it exists.

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		0000000	0	0000
Mathem	atical difficult	ty		

VaR does not respect convex order: more tricky

• Good news: the questions for $\overline{\text{VaR}}_p(S_d)$, $\underline{\text{VaR}}_p(S_d)$ and $\underline{\text{ES}}_p(S_d)$ are mathematically similar.

Finding $\overline{\operatorname{VaR}}_p(S_d)$

Search for a smallest element in $S_d(\hat{F}_1, ..., \hat{F}_d)$ with respect to convex order, where \hat{F}_i is the *p*-tail-conditional distribution of F_i .

• $\underline{\text{VaR}}_p(S_d)$ is symmetric to $\overline{\text{VaR}}_p(S_d)$.

VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
000000000000			

Summary of existing results

d = 2:

• fully solved analytically

 $d \ge 3$:

- Homogeneous model ($F_1 = \cdots = F_d$)
 - $\underline{\text{ES}}_p(S_d)$ solved analytically for decreasing densities, e.g. Pareto, Exponential
 - VaR_p(S_d) solved analytically for tail-decreasing densities, e.g. Pareto, Gamma, Log-normal
- Inhomogeneous model
 - Few analytical results: current research
- Numerical methods available: Rearrangement Algorithm

< ロ > < 同 > < 回 > < 回 > < 回 > <

00000	000000000000	0000000	0	0000	
VaD have de					

VaR bounds

d = 2, Makarov (1981) and Rüschendorf (1982)

For any $p \in (0, 1)$,

$$\overline{\mathrm{VaR}}_p(S_2) = \inf_{x \in [0, 1-p]} \{F_1^{-1}(p+x) + F_2^{-1}(1-x)\},\$$

and

$$\underline{\operatorname{VaR}}_p(S_2) = \sup_{x \in [0,p]} \{ F_1^{-1}(x) + F_2^{-1}(p-x) \}.$$

• A large outcome is coupled with a small outcome.

∃ >

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	0000000000000	00000000	o	0000

VaR bounds - homogeneous model

Sharp VaR bounds (Wang, Peng and Yang, 2013)

Suppose that the density function of *F* is decreasing on $[b, \infty)$ for some $b \in \mathbb{R}$. Then, for $p \in [F(b), 1)$, and $X \stackrel{d}{\sim} F$,

 $\overline{\operatorname{VaR}}_p(S_d) = d\mathbb{E}[X|X \in [F^{-1}(p + (d-1)c), F^{-1}(1-c)]],$

where *c* is the smallest number in $[0, \frac{1}{d}(1-p)]$ such that

$$\int_{p+(d-1)c}^{1-c} F^{-1}(t) dt \geq \frac{1-p-dc}{d} ((d-1)F^{-1}(p+(d-1)c) + F^{-1}(1-c)).$$

Red part clearly has an ES-type form.

•
$$c = 0$$
: $\overline{\operatorname{VaR}}_p(S_d) = \overline{\operatorname{ES}}_p(S_d)$.

A (1) > A (2) > A

00000 0000000000 000000 00000 000000000	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
	00000000000000			

VaR bounds - homogeneous model

Sharp VaR bounds II

Suppose that the density function of *F* is decreasing on its support. Then for $p \in (0, 1)$ and $X \stackrel{d}{\sim} F$,

Red part has an LES form.

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	00000000000000	00000000	o	0000

ES bounds - homogeneous model

Sharp ES bounds (Bernard, Jiang and Wang, 2014)

Suppose that the density function of *F* is decreasing on its support. Then for $p \in (1 - dc, 1)$, q = (1 - p)/d and $X \stackrel{d}{\sim} F$,

$$\underline{\mathrm{ES}}_p(S_d) = \frac{1}{q} \int_0^q \left((d-1)F^{-1}((d-1)t) + F^{-1}(1-t) \right) \mathrm{d}t,$$
$$= (d-1)^2 \mathrm{LES}_{(d-1)q}(X) + \mathrm{ES}_{1-q}(X),$$

where *c* is the smallest number in $[0, \frac{1}{d}]$ such that

$$\int_{(d-1)c}^{1-c} F^{-1}(t) dt \ge \frac{1-dc}{d} ((d-1)F^{-1}((d-1)c) + F^{-1}(1-c)).$$

• One large outcome is coupled with d - 1 small outcomes.

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	000000000000000	0000000	0	0000
Complete	e mixability			

The homogeneous VaR and ES bounds are based on the notion of complete mixability:

Complete mixability, Wang and Wang (2011)

A distribution function *F* on \mathbb{R} is called *d*-completely mixable (*d*-CM) if there exist *d* random variables $X_1, \ldots, X_d \sim F$ such that

$$\mathbb{P}(X_1 + \dots + X_d = dk) = 1,$$

for some $k \in \mathbb{R}$.

• Equivalently, $S_d(F, \ldots, F)$ contains a constant.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	0000000000000	0000000	0	0000
Complet	te mixability			

- Some examples of *d*-CM distributions for all *d* ≥ 2: Normal, Student t, Cauchy, Uniform.
- Most relevant result: *F* has a monotone density on a finite interval with a mean condition (depends on *d*) is *d*-CM.
 - Examples: (truncated) Pareto, Gamma, Log-normal.
- Inhomogeneous version called joint mixability.
- A full characterization of these classses is at the moment is widely open.

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	00000000000	0000000	0	0000
Numerica	al calculation			

Rearrangement Algorithm (RA): Embrecths, Puccetti and Rüschendorf (2013).

- A fast numerical procedure
- Based on the CM-idea
- Discretization of relevant quantile regions
- *d* possibly large
- Applicable to $\overline{\text{VaR}}_p$, $\underline{\text{VaR}}_p$ and $\underline{\text{ES}}_p$

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		●0000000	0	0000
Asympt	otic equivaler			

Consider the case $d \to \infty$. What would happen to $\overline{\text{VaR}}_p(S_d)$?

- Clearly always $\overline{\operatorname{VaR}}_p(S_d) \leq \overline{\operatorname{ES}}_p(S_d)$.
- Recall that $\overline{\text{VaR}}_p(S_d)$ has an ES-type part.

Under some weak conditions,

Ш

J

$$\lim_{d\to\infty}\frac{\overline{\mathrm{ES}}_p(S_d)}{\overline{\mathrm{VaR}}_p(S_d)}=1.$$

This was shown first for homogeneous models and then extended to general inhomogeneous models.

Asymptotic equivalence - homogeneous model

Theorem 1

In the homogeneous model, $F_1 = F_2 = \cdots = F$, for $p \in (0, 1)$ and $X \sim F$, we have that

$$\lim_{d\to\infty}\frac{1}{d}\overline{\mathrm{VaR}}_p(S_d)=\mathrm{ES}_p(\mathrm{X}).$$

• Similar limits hold for a large class of risk measures

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
	000000		

Asymptotic equivalence - worst-cases

Theorem 2 (Embrechts, Wang and Wang, 2014)

Suppose the continuous distributions F_i , $i \in \mathbb{N}$ satisfy that for $X_i \sim F_i$ and some $p \in (0, 1)$,

(i) $\mathbb{E}[|X_i - \mathbb{E}[X_i]|^k]$ is uniformly bounded for some k > 1; (ii) $\liminf_{d \to \infty} \frac{1}{d} \sum_{i=1}^d \mathrm{ES}_p(X_i) > 0.$

Then as $d \to \infty$ *,*

$$\frac{\overline{\mathrm{ES}}_p(S_d)}{\overline{\mathrm{VaR}}_p(S_d)} = 1 + O(d^{1/k-1}).$$

VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
	0000000		

Asymptotic equivalence - best-cases

Similar results holds for $\underline{\text{VaR}}_p$ and $\underline{\text{ES}}_p$: assume (i) and

(iii)
$$\liminf_{d\to\infty} \frac{1}{d} \sum_{i=1}^d \text{LES}_p(X_i) > 0,$$

then

$$\lim_{d \to \infty} \frac{\frac{\text{VaR}_p(S_d)}{\text{LES}_p(S_d)} = 1,$$
$$\lim_{d \to \infty} \frac{\underline{\text{ES}}_p(S_d)}{\sum_{i=1}^d \mathbb{E}[X_i]} = 1,$$

and

$$\frac{\underline{\mathrm{VaR}}_p(S_d)}{\underline{\mathrm{ES}}_p(S_d)} \approx \frac{\sum_{i=1}^d \mathrm{LES}_p(X_i)}{\sum_{i=1}^d \mathbb{E}[X_i]} \leq 1, \ d \to \infty.$$

★ 課 ▶ ★ 理 ▶ ★ 理 ▶

Example: Denote(2) vieles						
Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References 0000		

Example: Pareto(2) risks

Bounds on VaR and ES for the sum of *d* Pareto(2) distributed rvs for p = 0.999; VaR_p⁺ corresponds to the comonotonic case.

	d = 8	<i>d</i> = 56
<u>VaR</u> _p	31	53
$\underline{\mathrm{ES}}_p$	178	472
VaR_p^+	245	1715
$\overline{\mathrm{VaR}}_p$	465	3454
$\overline{\mathrm{ES}}_p$	498	3486
$\overline{\mathrm{VaR}}_p/\mathrm{VaR}_p^+$	1.898	2.014
$\overline{\mathrm{ES}}_p/\overline{\mathrm{VaR}}_p$	1.071	1.009

∃ >

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		00000●00	0	0000
Example:	Pareto(θ) risk	S		

Bounds on the VaR and ES for the sum of d = 8Pareto(θ)-distributed rvs for p = 0.999.

	$\theta = 1.5$	$\theta = 2$	$\theta = 3$	$\theta = 5$	$\theta = 10$
$\overline{\mathrm{VaR}}_p$	1897	465	110	31.65	9.72
$\overline{\mathrm{ES}}_p$	2392	498	112	31.81	9.73
$\overline{\mathrm{ES}}_p/\overline{\mathrm{VaR}}_p$	1.261	1.071	1.018	1.005	1.001

Framework	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000		000000€0	0	0000
Donono	longo un cortai	ntronnod		

Dependence-uncertainty spread

Theorem 3 (Embrechts, Wang and Wang, 2014)

Take $1 > q \ge p > 0$. *Suppose that the continuous distributions* $F_i, i \in \mathbb{N}$, satisfy (i) and (iii), and $\limsup_{d\to\infty} \frac{\sum_{i=1}^d \mathbb{E}[X_i]}{\sum_{i=1}^d \mathbb{E}S_p(X_i)} < 1$, then

$$\liminf_{d\to\infty} \frac{\overline{\operatorname{VaR}}_q(S_d) - \underline{\operatorname{VaR}}_q(S_d)}{\overline{\operatorname{ES}}_p(S_d) - \underline{\operatorname{ES}}_p(S_d)} \ge 1.$$

- The uncertainty spread of VaR is generally bigger than that of ES.
- In recent Consultative Documents of the Basel Committee, VaR_{0.99} is compared with ES_{0.975}: p = 0.975 and q = 0.99.

00000	000000000000	0000000	0	0000	
Domondon co un containty comood					

Dependence-uncertainty spread

ES and VaR of $S_d = X_1 + \cdots + X_d$, where

• $X_i \sim \text{Pareto}(2 + 0.1i), \ i = 1, \dots, 5;$

•
$$X_i \sim \operatorname{Exp}(i-5), i = 6, \ldots, 10;$$

• $X_i \sim \text{Log-Normal}(0, (0.1(i-10))^2), i = 11, \dots, 20.$

	d = 5			d = 20		
	best	worst	spread	best	worst	spread
ES _{0.975}	22.48	44.88	22.40	29.15	102.35	73.20
VaR _{0.975}	9.79	41.46	31.67	21.44	100.65	79.21
VaR _{0.9875}	12.06	56.21	44.16	22.12	126.63	104.51
VaR _{0.99}	12.96	62.01	49.05	22.29	136.30	114.01
$\frac{\overline{\text{ES}}_{0.975}}{\overline{\text{VaR}}_{0.975}}$		1.08			1.02	

イロト イポト イヨト イヨト

Challenge	es			
Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges •	References 0000

Open mathematical questions:

- Characterization of complete and joint mixability
- Characterization of *S*_d
- Find VaR_p under more general settings, especially in the inhomogeneous model
- Partial dependence information and realistic scenarios
- Marginal uncertainty and statistical estimation
- Many more ...

Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References ●●●0
Referen	ces I			

- Bernard, C., X. Jiang, and R. Wang (2014). Risk aggregation with dependence uncertainty. *Insurance: Mathematics and Economics*, 54(1), 93–108.
- Embrechts, P., G. Puccetti, and L. Rüschendorf (2013).
 Model uncertainty and VaR aggregation. *Journal of Banking and Finance*, 37(8), 2750–2764.
- Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj (2014). An academic response to Basel 3.5. *Risks*, 2(1), 25–48.

< 同 > < 三 > <

Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References ●●●○
Referen	ces II			

- Embrechts, P., B. Wang, and R. Wang (2014). Aggregation-robustness and model uncertainty of regulatory risk measures. *Preprint*, ETH Zurich.
- Makarov, G.D. (1981). Estimates for the distribution function of the sum of two random variables with given marginal distributions. *Theory of Probability and its Applications*, 26, 803–806.
- **R**üschendorf, L. (1982). Random variables with maximum sums. *Advances in Applied Probability*, 14(3), 623–632.

Framework 00000	VaR and ES Bounds	Asymptotic Equivalence	Challenges 0	References ●●●○
Reference	ces III			

- Wang, B. and R. Wang (2011). The complete mixability and convex minimization problems with monotone marginal densities. *Journal of Multivariate Analysis* 102(10), 1344–1360.
- Wang, R., L. Peng, and J. Yang (2013). Bounds for the sum of dependent risks and worst value-at-risk with monotone marginal densities. *Finance and Stochastics* 17(2), 395–417.

	VaR and ES Bounds	Asymptotic Equivalence	Challenges	References
00000	0000000000000	0000000		0000

THANK YOU!

ヘロト 人間 とくほ とくほとう