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1 Introduction and background
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Introduction

This is preliminary work. Comments welcome.

Markowitz efficient portfolios selected by investors

These portfolios have desirable properties

Mean variance efficient

Sharpe used these ideas to develop the CAPM

Equilibrium model relating expected return to risk

Market portfolio is mean variance efficient
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Compatible Σ, x

(m)
,µ

Σ covariance matrix; µ return vector, x (m) market weights

These three entities have to be compatible since x (m) on
frontier

Best and Grauer (1985)

Σx
(m) = γ1µ+ γ2e (1)

Assume Σ known

Assume- for now- we have a way to find x (m)

Task is to find compatible µ
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Picking the market portfolio

Origins of idea from Sharpe and Ross (APT)

Dominant common factor that influences stock returns

PCA used to identify this factor

Principal eigenvector of the correlation matrix

Trzcinka (1986), Laloux et al(1999), Avellaneda and Lee
(2010) & Allez and Bouchaud (2011)

Market portfolio should have positive weights

When will principal eigenvector have positive weights?
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1 Introduction and background

2 Perron Frobenius
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The Perron-Frobenius Theorem

Theorem (Perron-Frobenius)

A real n × n matrix, A, with positive entries has a unique
largest real eigenvalue and the corresponding eigenvector has
strictly positive components.

Provides sufficient conditions

Result can be weakened

Matrix A can have some negative elements and retain the
Perron-Frobenius (PF ) property.

There are sometimes negative correlations between stock
returns. Hence we are interested in correlation matrices which
have the PF property
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1 Introduction and background

2 Perron Frobenius

3 Analysis of empirical data
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Empirical experiment

We obtain CRSP daily returns for S&P1500 components from
1990-2013.

Divide data to five-year periods

Select 10,000 random samples of 50 stocks, compute C

All matrices positive-definite

For non-positive matrices, we study the distribution of
elements

Test whether the type can be determined based on simple
rules for the elements
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Changes in correlation through time
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Visualizing changes in correlation through time

Daily Return Correlation sp1500_90_93
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Distribution of elements

Fatter left tails for Non-PF correlation matrices. E.g.
1994-1998:
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Count of negative elements

Estimated density for the count of negative elements. E.g.
1994-1998:
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Characteristics of stock correlations

Which stocks are most prevalent in Non-PF matrices?

- rank stocks by average correlation with the rest
(ascending)

- take the top three; these are ”low correlation” stocks

Low correlation stocks appear as (almost) full rows of
negative elements

When these stocks are selected we end up with Non-PF
matrices

- Consistent with proposition on strictly negative rows
(discussed later)
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Element distribution: empirical vs simulated

Statistics of negative elements

Empirical Simulated

Stat PF Non-PF PF Non-PF

Count* 45 72 N/A 612

Mean -0.016 -0.019 N/A -0.112
Std dev 0.014 0.015 N/A 0.084
Min -0.171 -0.171 N/A -0.661
25% -0.022 -0.027 N/A -0.162
50% -0.012 -0.015 N/A -0.096
75% -0.005 -0.006 N/A -0.045
Max -0.000 -0.000 N/A -0.000

* average number per matrix
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Visualizing negative rows

Daily Return Correlation sp1500_94_98
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Figure: Correlation matrix visualization. 100 stocks daily returns,
1994-1998.
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Visualizing negative rows

Different sampling frequency (e.g. weekly) can sometimes
reduce the number of negative correlation

Daily Return Correlation sp1500_94_98 Weekly Return Correlation sp1500_94_98
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Figure: Correlation matrix visualization. Daily (left) returns vs weekly
(right) returns
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Notation

PF(n) is the set of n× n correlation matrices possessing
the strong Perron-Frobenius property

PF
+(n) is the set of matrices in PF(n) that have only

positive elements

PF
−(n) is the set of matrices in PF(n) that have at least

one negative element

PD(n) is the set of n× n positive-definite correlation
matrices

PF
PD(n) is the set PF(n) ∩ PD(n)



Correlation
Matrices and
the Perron-
Frobenius
Theorem

Phelim Boyle

Introduction
and
background

Perron
Frobenius

Analysis of
empirical data

Theoretical
results

Numerical
investigations

Summary and
conclusions

Analytic result for three by three case

Consider the 3× 3 correlation matrix

C =





1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1





C ∈ PF(3) when the following condition holds











ρ12 + ρ13 > 0

ρ12 + ρ23 > 0

ρ13 + ρ23 > 0

When A,B ∈ PF
PD(3), then convex combination always

preserve the above condition

PF
PD(3) is convex
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Negative row

Assume C ∈ PF(n), and λ and υ are dominant eigenpair. Then
λ > 1 and υi > 0, i = 1, . . . , n. For each row i ,

υi +
∑

j 6=i

υjρi ,j = λυi (2)

υ1(λ− 1) =
∑

j 6=i

υjρi ,j (3)

The LHS of (3) is positive. Thus, ρi ,j cannot be all negative.
In other words, PF matrix cannot have rows of only negative
off diagonals!
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Constant correlation matrices

Suppose P is a correlation matrix. P has all off-diagonal entries
equal to ρ

Whenever ρ > −
1

n−1 , P ∈ PD(n)

Furthermore, P ∈ PF
PD(n) if and only if ρ > 0
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Numerical investigations

Simulate 10,000 random positive-definite correlation
matrices using Harry Joe’s method (2006)

Study the distribution of Non-PF and PF matrices among
various dimensions

Within the set of PF matrices, we test convexity properties

Better understand eventually positive condition
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Simulated proportions by type

Dimension PF
+(n) PF

−(n) Non-PF

3 14.78% 10.04% 75.18%
4 3.29% 9.31% 87.40%
5 0.45% 5.59% 93.96%
6 0.08% 3.02% 96.90%
7 0.01% 1.55% 98.44%
8 0.00% 0.79% 99.21%

Table: Proportion of sample correlation matrices by type from
dimension 3 to 8

The set of PF matrices shrinks while matrix dimension
increases
The decreasing portion of positive matrices proposes a
limitation of simulation method - low likelihood of getting
positive matrices
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Eventually positive matrices

Definition

An n× n matrix A is said to be eventually positive if there
exists a positive integer k0 such that Ak

> 0 for all k > k0.

Theorem (Noutsos)

For any symmetric n × n matrix A the following properties are
equivalent.

1 A possesses the strong Perron-Frobenius property.

2 A is eventually positive
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Summary

Interest in finding compatible x (m) and µ

Market portfolio has positive weights

Proxied by dominant eigenvector of correlation matrix

When does dominant eigenvector have positive weights

Perron-Frobenius property

Explored this question in three ways

1 Using empirical data
2 Theoretical analysis
3 Numerical simulation
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Conclusions

Empirical results

Negative correlation has declined during last 20 years

Negative correlations tend to occur in rows

Has implications for PF property

Analytical results

A row of negative correlations destroys the PF property

Obtained a simple characterization of 3× 3 matrices

Constant correlation matrices have simple classification

Simulation results

PF matrices rare in high dimensions for random matrices

Failure of PF related to negative elements

Related to number, size and position of negative elements
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