Model Selection and Averaging of Health Costs in Episode Treatment Groups Shujuan(Jane) Huang

University of Connecticut

Joint work with Brian M. Hartman (UConn) and Vytaras Brazauskas (UW-Milwaukee)

Research supported by CIGNA and the Hickman Scholarship, Travel supported by the Graduate School at the University of Connecticut

49th Actuarial Research Conference, Santa Barbara, July 15, 2014

Episode Treatment Groups (ETG)

Sample ETGs Dictionary

ETG_NUM	ETG_DESC
1301	AIDS
1302	HIV sero-positive w/o AIDS
1304	Septicemia
1306	Other infectious diseases
1308	Immunodeficiencies
1399	Infectious diseases signs & symptoms
1620	Lipidoses (Gauchers Disease, Fabry Disease, Mucolipidosis I-III)
1621	Hyper-functioning thyroid gland
1622	Hypo-functioning thyroid gland
1623	Non-toxicgoiter
1624	Malignant neoplasm of thyroid gland
1625	Non-malignant neoplasm of thyroid gland
1626	Other diseases of thyroid gland
1630	Diabetes

Histogram for Total Charged Amount on individual and annual basis for Sample ETG 2070

49th Actuarial Research Conference, July 15, 2014

Shujuan Huang

- Akaike information criterion (AIC)/Bayesian information criterion(BIC)
- AIC/BIC weights
- Results on sample ETG:

			BIC				
lognormal	gamma	log skew T	lomax	lognormal	gamma	log skew T	lomax
5361.11	5468.30	5365.07	5365.11	5368.24	5475.43	5372.20	5379.37

AIC weights				BIC weights			
lognormal	gamma	log skew T	lomax	lognormal	lomax		
0.785	0.000	0.109	0.106	0.876	0.000	0.121	0.003

Shujuan Huang

Introduction to Four Metrics (Part 2): Bayesian Parallel Model Selection

Gives the probabilities of each model being the best given the data and all models under consideration, enabling model averaging and providing deeper insights into the relationships between the models.

	Lognormal	Folded T	Gamma	Log skew T
Hemophilia (ETG2070)	100%	0%	0%	0%
Chronic Renal Failure(ETG5554)	0%	0%	0%	100%
Hyper-functioning adrenal gland (ETG1635)	0%	0.0015%	0%	99.9985%
Personality Disorder (ETG2394)	68.74%	0%	0%	31.26%

Shujuan Huang

Model Selection and Average of Health Cost in ETG

9

Introduction to Four Metrics (Part 3): Random Forest Feature Classification 10 Model selection using database characteristics: Schwartz and Bradlow(2013) Random forests: An ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees. Features: ✤ Efficiency Thousands of input variables without variable deletion Missing data Prediction 49th Actuarial Research Conference, July 15, 2014

Shujuan Huang

12 Procedures for Random Forest Model Selection

Step 1: Domain Specific Feature Extraction

(mean, variance, skewness, kurtosis, q1, q3, median...)

Step 2: Train the Random Forest for Prediction

Step 3: Random Forest Model Selection

ETG_NUM	lognormal	gamma	log skew T	lomax	winner
1301	0.11275	0.24475	0.537	0.1055	log skew T
1302	0.2415	0.211	0.415	0.1325	log skew T
1304	0.9665	0.0105	0.0165	0.0065	lognormal
1306	0.0045	0.00125	0.93225	0.062	log skew T
1308	0.89925	0.001	0.00675	0.093	lognormal

49th Actuarial Research Conference, July 15, 2014

Shujuan Huang 🛛 🖊

Classification Results on Training and Testing Data

Classification results on training data

	OOB estimate of error rate	List of distributions
4 distributions	0.25%	lognormal, gamma, log skew T, Lomax
3 distributions	0.00%	lognormal, gamma, Lomax

Classification results on testing data							
	Distributions	Misclassifica tion Rate	Details				
Test 1	Four distributions: lognormal, gamma, log skew T, Lomax	23.8%	500 simulated datasets for each distribution (2000 in all)				
Test 2	Three distributions: lognormal, gamma, Lomax	1.2%	500 simulated datasets for each distribution (1500 in all)				

49th Actuarial Research Conference, July 15, 2014

Shujuan Huang

Model Selection and Average of Health Cost in ETG

13

Speed Comparison on all ETGs among Four Metrics

Models	Time
Random Forest	About 2 minutes
AIC and BIC	About 4 hours
Bayesian	About 4 weeks

Comments: 8 GB Thinkpad with a 2.50 GHz Intel Quad-Core processor

49th Actuarial Research Conference, July 15, 2014

14

Shujuan Huang

Accuracy Comparison on Simulated Datasets among Three Metrics

		Randor	n Forest			Bay	esian			AIC w	veights	
dataset	lognormal	gamma	log skew T	LOMAX	lognormal	gamma	log skew T	LOMAX	lognormal	gamma	log skew T	LOMAX
1-lognormal	99.70%	0.00%	0.10%	0.20%	100.00%	0.00%	0.00%	0.00%	75.81%	0.00%	24.19%	0.00%
2-gamma	11.30%	62.75%	15.00%	10.95%	1.90%	93.90%	3.14%	1.06%	0.00%	94.42%	5.58%	0.00%
3-log skew T	0.08%	0.03%	67.58%	32.33%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	93.91%	6.09%
4-lomax	0.03%	0.00%	43.98%	56.00%	0.23%	0.00%	38.54%	61.23%	0.00%	0.00%	27.81%	72.19%

Shujuan Huang

49th Actuarial Research Conference, July 15, 2014

Shujuan Huang

Prior Distributions Setting

19

Distributions	Priors	Thinned Samples Per Chain	Burning Sample Per Chain	
lognormal	$\tau \sim \text{Gamma}(4,4.5)$	30,000	20,000	
lognormai	$\mu \sim \text{Norm}(6,5)$	30,000	20,000	
	$\tau \sim \text{Gamma}(2,3)$			
gamma	$\nu \sim \operatorname{Exp}(\omega)$	50,000	35,000	
	$\omega \sim \text{Uniform}(0.01,10)$			
	$\theta \sim \operatorname{Norm}(0,5)$			
	$\Omega \sim$ Inverse Gamma(6,1)			
Log skew T	$\alpha \sim \text{Norm}(50,4)$	300,000	260,000	
	$\xi \sim \operatorname{Norm}(\theta, 7)$			
	$\nu \sim \text{dexp}(0.25)$			
Lomax	$\lambda \sim \text{Gamma}(2,3)$			
	$\alpha \sim \operatorname{Exp}(\omega)$	300,000	20,000	
	$\omega \sim \text{unif}(0.01,10)$			

Actuarial Student Conference, UConn, April 21,2014