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Emergency Preparedness Decisions

Number of local crews 

Deployment of resources

Staging of equipment

Timing of staffing (when to call in crews)

Source: K. Bowes, CL&P

Estimated Drive Time for Outside Line and Tree Crews

Need for outside crews to be called in 
Total predicted damages (and associated length of outages) for the 
entire service territory

Spatial distribution of damage occurrences (what areas will be hit 
hardest from winds and flooding?)

Regional weather/damage predictions (what other service territories 
will be impacted by the same storm?)

Prediction Model Outputs/Information

Storm Sandy: Predicted TSs per town 

Why is risk management important?



1. Damage Prediction
Our main deliverable to the utilities



Data and Deliverables



Weather Data
• Mean and max of weather variables are captured on a 2 km grid overlaying 

the service territory

Figure: MaxWind10m during SandyFigure: Nested weather grids (different resolutions)



TS and Distribution Infrastructure

• Daily trouble spot data for CL&P 
from 2005 - 2013

• Latitude/longitude of all 
distribution infrastructure (poles, 
transformers, reclosers, switches, 
fuses)

• Count of circuit miles per town 
(backbone and lateral)

• Count of customers per town

Figure: Assets per 2 km pixel



- 2 km grid overlaying the entire CL&P service 
territory

- Same grid used by WRF to forecast weather 
variables (wind, precipitation) during storm 
events

- High resolution compared to town 
areas

- One town has many 2-km pixels

- 30 m pixels overlaying the State of 
Connecticut

- Developed by the UCONN Center for Land 
Use Education and Research

- 12 land use categories (forest, developed, 
grass, wetlands)

- Power lines follow the road, can’t just use 
the closest pixels to the power lines!

- Created 30 m and 60 m buffers around 
CL&P distribution power lines, created 
points every 30 m each buffer, spatially 
joined to land use category

- 30 m points along 60 m buffer is most 
representative of field conditions

Data Blending – Infrastructure & Land Use



Damage Prediction Model

7/10/2014 Bayesian Regression Tree in DPM 8

The BART model (Bayesian additive regression trees) is a statistical model based on 
sum of regression trees, combining the advantages of multiple tree learning and 
Bayesian inference:

 Prediction power from regression tree learning

 Resistant to overfitting (like random forests)

 Robust to extreme response values

BART models are applied by season at the 2 kilometer grid level.



• Transition
• Winter
• Summer

Actual vs. Predicted (BART)



• Transition
• Winter
• Summer

Actual vs. Predicted (BART) – no hurricane cases



2. Vegetation Management
Effect of vegetation management on outages based on damage model results



Vegetation Management Data
Standard Maintenance Trimming (SMT) Enhanced Tree Trimming (ETT)

- Most utilities strive to trim circuits on a 4 year cycle
- SMT features were recorded by NU as line features,
Dissolved to 2 km grid, then sum length

- Most utilities strive to trim circuits on a 4 year cycle
- ETT features were recorded by NU as polygon features,
needed to dissolve power line shapefile and spatially join 
power lines to polygons, then sum
- ETT is more sparse than SMT

*spatial join preferred to other joins/queries, because circuits can change names over time (difficult to update)



PercForest and Asset Data per Pixel

PercForest (computed around OH lines) Count Assets



Overview – DT model analysis
Methodology
• Bootstrap DT forest analysis calibrated on pixels 

with ETT and SMT > 0

• BART model analysis calibrated on pixels with 
ETT and SMT > 0:

• Variable importance: The % usage of a 
specific variable on tree branch splitting

• Partial dependence: Expected response 
based on all other variables given fixed 
values.

Other Notes
• 18 storms from 2011 – 2013 (excludes October 

2011 nor’easter)

• 2,851 pixels cover the State (2 km grid)

• ETT is cumulative for all years (additive)

• SMT is cumulative, but has a 25% decay per 
year since trimming occurred

Models Evaluated
• ETT > 0 ONLY Calibration

• ETT and SMT > 0 Calibration

• Change SMT and ETT in scenarios

• Scenarios evaluated

• 10%, 33%, 66% trimming

• Trimming benefit is relative to a 10% 
trimming baseline for all scenarios

Cumulative PercSMT (linear decay) Cumulative PercETT (2009 – 2012) Pixels never trimmed (2009 – 2012)



Results - Bootstrap DT forest analysis 

ETT > 0 Model

• Range (relative difference)
• 33% Trim: 5% - 15% decrease

• 66% Trim: 8% - 24% decrease

• Mean (relative difference)
• 33% Trim: 9% decrease

• 66% Trim: 13% decrease

SMT and ETT > 0 Model

• Range (relative difference)
• 33% Trim: 7% - 24% decrease

• 66% Trim: 11% - 32% decrease

• Mean (relative difference)
• 33% Trim: 15% decrease

• 66% Trim: 20% decrease

Note: 18,020 pixels used for calibration Note: 13,319 pixels used for calibration



3. HazPix
Leveraging granular Lidar altitude data to improve damage prediction



Field Vegetation Survey and LiDAR Dataset
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• Survey included…

 11 sites

 7.6 km of roadside

 1650 roadside trees

 124 interior forest plots

• Airborne laser scanner determines 
location and elevation of objects on 
ground surface.

• Eastern CT LiDAR dataset acquired in 
November 2010 (leaf-off)
• Average point density: 1.6 pts/m2 
• Maximum point spacing: 0.7 m
• Vertical accuracy:  21 cm (forest)
• Horizontal accuracy: 1 m
• Bare-earth DEM (1 m resolution) 

developed by data provider
• Tree heights and positions for 

validation of LiDAR height model.
• Tree inventory and hazards to 

characterize roadside forests.

Figure: LiDAR Coverage area



LiDAR Height Model Example

• Pixel height = max elevation – ground elevation

• 1 x 1 meter pixel size
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White – low elevation
Black – high elevation

Trees



LiDAR Model Validation

• Field heights compared with heights from LiDAR model to assess 
accuracy.

• Model underestimated heights by 1.1 meters on average. 
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Hazard Pixels
• Pixels tall enough and close enough to 

strike lines in event of a tree failure.
• pixels are a proxy for trees

• Classified based on type of lines they can 
reach… 
• backbone or non-backbone.
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Position of Hazard Pixels
• Upwind hazard pixels likely to be of greater 

risk to power lines.
• Pixels classified by position relative to lines

• within 15 meters
• direction to lines (i.e. NNE, ENE, etc.)

• Metric can be matched to predicted wind 
direction

HazPix in buffer

utility line

15m buffer

HazPix to SSE

HazPix to ENE



Forest Canopy Density

• Canopy density influences tree wind exposure 
and thus wind adaptation.

• Canopy density calculated for hazard pixels

21

Soil Conditions
• Wet soils increase potential for windthrow.

• Hazard pixels classified by presence of wetland 
soils (DEEP GIS data).



Histogram: TS/Asset by HazPix

TS/A
sset

Low HazPix/Asset Medium HazPix/Asset High HazPix/Asset



Future Work on HazPix

• Repeat HazPix analysis for Northwestern Connecticut (LiDAR data captured 
December 2011 data)

• Compare the relationship between Eastern CT
• Expand HazPix grid to other parts of CT
• Incorporate trimming data with HazPix into the DPM

http://cteco.uconn.edu/help/info_lidar.htm



Conclusions

• Both DT and BART models performed well in predicting CL&P 
service territory total number of TSs
• Two-model calibration is needed: with and without hurricane cases; 

• Models use seasonal separation, which seems to improve model 
predictions;

• Land use and infrastructure data improve model accuracy

• Both models were able to describe well the complex relationship 
between vegetation management, weather, land use and TSs. 

• Calibrated models were used to evaluate impacts from different 
vegetation management scenarios
• Up to ~35% reduction of TSs was noted in the case of high (66%) ETT 

and SMT trimming.



Sound fun? Join our team!

We are currently offering two positions

• Post-doctoral Fellow, starting either Winter or Fall 2015

• Funded PhD studentships in actuarial science, statistics, or 
environmental engineering currently available

In both cases, we are looking for people with a strong 
statistics/analytics background who are interested in learning more 
than you ever thought you would about weather and trees

Contact me with questions or interest, brian.hartman@uconn.edu

mailto:brian.hartman@uconn.edu
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