# Adverse Selection, Loss Coverage and Equilibrium Premium in Insurance Markets

MingJie Hao
Dr. Pradip Tapadar, Mr. Guy Thomas
University of Kent

ARC 2014 UC Santa Barbara

July 14

- Background
  - How does insurance work?
  - Risk classification Scheme

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



### Background

#### How insurance works and risk classification scheme



- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



•  $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$ 



•  $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1$ .

### Original definition

Purchasing decision is positively correlated with losses

-Chiappori and Salanie (2000) "Positive Correlation Test"

•  $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$ 

### Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.



•  $0, \pi_1, \pi_2, \pi_3, \pi_e, ..., \pi_7, \pi_8, ..., \pi_n, 1.$ 

### Original definition

Purchasing decision is positively correlated with losses -Chiappori and Salanie (2000) "Positive Correlation Test"

Empirical results are mixed and vary by market.

| =pca. recalle all eca all e |                                              |                                |   |
|-----------------------------|----------------------------------------------|--------------------------------|---|
|                             | Life Insurance   Cawley and Philipson (1999) |                                | Χ |
|                             | Auto Insurance Chiappori and Salanie (2000)  |                                | X |
|                             |                                              | Cohen (2005)                   | 0 |
|                             | Annuity                                      | Finkelstein and Poterba (2004) | 0 |
|                             | Health Insurance                             | Cardon and Hendel (2001)       | X |

 Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?



- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?
- Model:

$$S = \frac{E[QL]}{E[Q]E[L]} = \frac{\text{pooled premium } \pi_e}{\text{population-weighted fair premium}}$$
(1)

where

Q: quantity of insurance

L: risk experience.

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measurement?
- Model:

$$S = \frac{E[QL]}{E[Q]E[L]} = \frac{\text{pooled premium } \pi_e}{\text{population-weighted fair premium}}$$
(1)

where

Q: quantity of insurance

L: risk experience.

S > 1 ⇒ Adverse Selection.



### Example

- A population of 1000
- Two risk groups
  - 200 high risks with risk 0.04
  - 800 low risks with risk 0.01
- No moral hazard

No restriction on risk classification



#### No restriction on risk classification

| Table 1            | Low risk-group | High risk-group |
|--------------------|----------------|-----------------|
| Population         | 800            | 200             |
| Risk               | 0.01           | 0.04            |
| Break-even premium | 0.01           | 0.04            |
| (fair premium)     | 0.01           | 0.04            |
| Number insured     | 400            | 100             |
| Adverse Selection  |                | 1               |

No restriction on risk classification

| Table 1            | Low risk-group | High risk-group |
|--------------------|----------------|-----------------|
| Population         | 800            | 200             |
| Risk               | 0.01           | 0.04            |
| Break-even premium | 0.01           | 0.04            |
| (fair premium)     | 0.01           | 0.04            |
| Number insured     | 400            | 100             |
| Adverse Selection  |                | 1               |

No adverse selection.

Restriction on risk classification-Case 1



#### Restriction on risk classification-Case 1

| Table 2                   | Low risk-group High risk-gro |          |
|---------------------------|------------------------------|----------|
| Population                | 800                          | 200      |
| Risk                      | 0.01                         | 0.04     |
| Break-even premium        | 0.02                         |          |
| (pooled premium $\pi_e$ ) | 0.02                         |          |
| Number insured            | 300(400)                     | 150(100) |
| Adverse Selection         | 1.25>1                       |          |

#### Restriction on risk classification-Case 1

| Table 2                   | Low risk-group High risk-gro |          |
|---------------------------|------------------------------|----------|
| Population                | 800                          | 200      |
| Risk                      | 0.01                         | 0.04     |
| Break-even premium        | 0.02                         |          |
| (pooled premium $\pi_e$ ) | 0.02                         |          |
| Number insured            | 300(400)                     | 150(100) |
| Adverse Selection         | 1.25>1                       |          |

Moderate adverse selection

Restriction on risk classification-Case 2



#### Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 200(400)       | 125(100)        |
| Adverse Selection         | 1.3462>1       |                 |

#### Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) | 0.02134        |                 |
| Number insured            | 200(400)       | 125(100)        |
| Adverse Selection         | 1.3462>1       |                 |

Heavier adverse selection

Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) | 0.02134        |                 |
| Number insured            | 200(400)       | 125(100)        |
| Adverse Selection         | 1.3462>1       |                 |

**Heavier adverse selection** 

Adverse selection suggests pooling is always bad. But is it?

- Background
  - ▶ How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



## Loss Coverage

### Loss Coverage

• Aim of insurance: provide protection for those who suffer losses.



### Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
  - High risks most need insurance.
  - Restriction on risk classification seems reasonable.

## Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
  - High risks most need insurance.
  - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

## Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
  - High risks most need insurance.
  - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

#### **Definition**

Loss Coverage 
$$=$$
  $\frac{\text{insured expected losses}}{\text{population expected losses}}$ 

## Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
  - High risks most need insurance.
  - Restriction on risk classification seems reasonable.
- Thomas (2008, 2009) "Loss Coverage":

#### Definition

```
Loss Coverage = \frac{\text{insured expected losses}}{\text{population expected losses}}
Loss Coverage Ratio = \frac{\text{loss coverage at a pooled premium}\pi_e}{\text{loss coverage at at fair premium}\pi_i}
> 1, Favorable!
```

No restriction on risk classification



No restriction on risk classification

| Table 1                 | Low risk-group | High risk-group |
|-------------------------|----------------|-----------------|
| Population              | 800            | 200             |
| Risk                    | 0.01           | 0.04            |
| Break-even premium      | 0.01           | 0.04            |
| (fair premium)          | 0.01           | 0.04            |
| Number insured          | 400            | 100             |
| Insured expected losses | 4              | 4               |
| Loss Coverage           | 0.5            |                 |
| Loss Coverage Ratio     | 1              |                 |

No restriction on risk classification

| Table 1                 | Low risk-group | High risk-group |
|-------------------------|----------------|-----------------|
| Population              | 800            | 200             |
| Risk                    | 0.01           | 0.04            |
| Break-even premium      | 0.01           | 0.04            |
| (fair premium)          | 0.01           | 0.04            |
| Number insured          | 400            | 100             |
| Insured expected losses | 4              | 4               |
| Loss Coverage           | 0.5            |                 |
| Loss Coverage Ratio     | 1              |                 |

No adverse selection.



Restriction on risk classification-Case 1



#### Restriction on risk classification-Case 1

| Table 2                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02           |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 300(400)       | 150(100)        |
| Insured expected losses   | 3              | 6               |
| Loss Coverage             | 0.5625         |                 |
| Loss Coverage Ratio       | 1.125>1        |                 |

Restriction on risk classification-Case 1

| Table 2                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02           |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 300(400)       | 150(100)        |
| Insured expected losses   | 3              | 6               |
| Loss Coverage             | 0.5625         |                 |
| Loss Coverage Ratio       | 1.125>1        |                 |

Moderate adverse selection but favorable loss coverage.

Restriction on risk classification-Case 2



#### Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 200(400)       | 125(100)        |
| Insured expected losses   | 2              | 5               |
| Loss Coverage             | 0.4375         |                 |
| Loss Coverage Ratio       | 0.875<1        |                 |

#### Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 200(400)       | 125(100)        |
| Insured expected losses   | 2              | 5               |
| Loss Coverage             | 0.4375         |                 |
| Loss Coverage Ratio       | 0.875<1        |                 |

Heavier adverse selection and worse loss coverage.

Restriction on risk classification-Case 2

| Table 3                   | Low risk-group | High risk-group |
|---------------------------|----------------|-----------------|
| Population                | 800            | 200             |
| Risk                      | 0.01           | 0.04            |
| Break-even premium        | 0.02154        |                 |
| (pooled premium $\pi_e$ ) |                |                 |
| Number insured            | 200(400)       | 125(100)        |
| Insured expected losses   | 2              | 5               |
| Loss Coverage             | 0.4375         |                 |
| Loss Coverage Ratio       | 0.875<1        |                 |

Heavier adverse selection and worse loss coverage.

Loss Coverage might be a better measurement!

### Table of contents

- Background
  - How does insurance work?
  - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



#### **Definition**

The demand function  $d(\mu, \pi)$  is the demand of a single individual with risk  $\mu$ , will buy insurance at premium  $\pi$ .

#### **Definition**

The demand function  $d(\mu, \pi)$  is the demand of a single individual with risk  $\mu$ , will buy insurance at premium  $\pi$ .

It is assumed to have the following properties:

•  $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0 \Rightarrow$  demand is a decreasing function of premium.

#### **Definition**

The demand function  $d(\mu, \pi)$  is the demand of a single individual with risk  $\mu$ , will buy insurance at premium  $\pi$ .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0 \Rightarrow$  demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2}d(\mu,\pi)>0$   $\Rightarrow$  a decreasing rate of fall in demand as premium increases.

#### **Definition**

The demand function  $d(\mu, \pi)$  is the demand of a single individual with risk  $\mu$ , will buy insurance at premium  $\pi$ .

It is assumed to have the following properties:

- $\frac{\partial}{\partial \pi}d(\mu,\pi) < 0 \Rightarrow$  demand is a decreasing function of premium.
- $\frac{\partial^2}{\partial \pi^2} d(\mu, \pi) > 0 \Rightarrow$  a decreasing rate of fall in demand as premium increases.

#### **Definition**

The demand elasticity  $\epsilon(\mu,\pi) = -\frac{\partial d(\mu,\pi)}{d(\mu,\pi)}/\frac{\partial \pi}{\pi}$  i.e. sensitivity of demand to premium changes.



#### Iso-elastic demand

$$d(\mu, \pi) = \tau \left[\frac{\pi}{\mu}\right]^{-\lambda}$$
 $\epsilon(\mu, \pi) = \lambda$ 

### Negative-exponential demand

$$d(\mu, \pi) = \tau e^{(1-\frac{\pi}{\mu})\lambda}$$
 $\epsilon(\mu, \pi) = \frac{\lambda}{\mu}\pi$ 



### Table of contents

- Background
  - ▶ How does insurance work?
  - ▶ Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



$$f(\pi_e) = E[\text{Total Profit}] = 0$$



$$f(\pi_e) = E[\text{Total Profit}] = 0$$

For two risk-groups,

$$f(\pi_{e}) = d(\mu_{1}, \pi_{e})p_{1}(\pi_{e} - \mu_{1}) + d(\mu_{2}, \pi_{e})p_{2}(\pi_{e} - \mu_{2}) = 0.$$
 (2)

$$f(\pi_e) = E[\text{Total Profit}] = 0$$

For two risk-groups,

$$f(\pi_e) = d(\mu_1, \pi_e) p_1(\pi_e - \mu_1) + d(\mu_2, \pi_e) p_2(\pi_e - \mu_2) = 0.$$
 (2)



Equilibrium Premium

## Multiple Equilibria

Only for extreme parameter values. E.g.

$$p_1 = 9000, au_1 = 1, \mu_1 = 0.01, \lambda_1 = 5; p_2 = 80, au_2 = 1, \mu_2 = 0.04, \lambda_2 = 1$$



## Multiple Equilibria

#### **Theorem**

Given  $(\mu_1, \mu_2)$ ,  $(\tau_1, \tau_2)$  and  $(\lambda_1, \lambda_2)$ , there are multiple equilibria if and only if  $\mathbf{c} < \mathbf{c_1}$  and  $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$ . Where

- $\bullet \ \alpha = \frac{p_1}{p_2}.$
- $\pi_{01}, \pi_{02}$  are solutions to  $f(\pi_e) = 0, f'(\pi_e) \leq 0$ .

## Multiple Equilibria

#### **Theorem**

Given  $(\mu_1, \mu_2)$ ,  $(\tau_1, \tau_2)$  and  $(\lambda_1, \lambda_2)$ , there are multiple equilibria if and only if  $\mathbf{c} < \mathbf{c_1}$  and  $\alpha(\pi_{01}) \le \alpha \le \alpha(\pi_{02})$ . Where

- $\bullet \ \alpha = \frac{p_1}{p_2}.$
- $\pi_{01}, \pi_{02}$  are solutions to  $f(\pi_e) = 0, f'(\pi_e) \leq 0$ .

For iso-elastic demand, 
$$c=\lambda_2-\lambda_1, c_1=-\frac{\sqrt{\mu_1+\sqrt{\mu_2}}}{\sqrt{\mu_2}-\sqrt{\mu_1}}<0.$$
 For negative-exponential demand,  $c=\frac{\lambda_2}{\mu_2}-\frac{\lambda_1}{\mu_1}, c_1=-\frac{4}{\mu_2-\mu_1}<0.$ 

## Example: Iso-elastic demand

$$\mu_1 = 0.01, \mu_2 = 0.04 \Rightarrow c_1 = -3;$$
  
 $\lambda_1 = 4, \lambda_2 = 0.5 \Rightarrow c = -3.5 < c_1$ 



## Example: Negative-exponential demand

$$\mu_1 = 0.01, \mu_2 = 0.04 \Rightarrow c_1 = -133.33$$
:  $\lambda_1 = 2, \lambda_2 = 0.5 \Rightarrow c = -187.5 < c_1$ 



### Table of contents

- Background
  - ▶ How does insurance work?
  - ► Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Equilibrium Premium
- Results
- Summary and Further research
- References



#### Results

### **Assumptions**

- There are 2 risk-groups
- They have equal demand elasticities -> Unique Equilibrium
  - lso-elastic demand:  $\lambda_1 = \lambda_2 = \epsilon(\pi_e)$
  - Negative-exponential demand:  $\frac{\lambda_1}{\mu_2}\pi_e = \frac{\lambda_2}{\mu_2}\pi_e = \epsilon(\pi_e)$



### Results: Adverse Selection

$$p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$$



## Results: Loss Coverage

$$p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04$$



### Table of contents

- Background
  - ▶ How does insurance work?
  - Risk classification Scheme
- Demand functions
  - Iso-elastic demand
  - Negative-exponential demand
- Multiple Equilibria
- Adverse Selection
- Loss Coverage
- Results
- Summary and Further research
- References





• When there is restriction on risk classification, a pooled premium  $\pi_e$  is charged across all risk-groups.



- When there is restriction on risk classification, a pooled premium  $\pi_e$  is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.

- When there is restriction on risk classification, a pooled premium  $\pi_{e}$  is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.



- When there is restriction on risk classification, a pooled premium  $\pi_e$  is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.
   Using iso-elastic and negative-exponential demand,

- When there is restriction on risk classification, a pooled premium  $\pi_e$  is charged across all risk-groups.
- There will always be adverse selection ⇒ Adverse Selection may not be a good measurement.
- Loss Coverage is an alternative metric.
   Using iso-elastic and negative-exponential demand,
- Adverse Selection is not always a bad thing!
   A moderate level of adverse selection can increase loss coverage.

#### **Further Research**

- Other/more general demand e.g.  $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^{\lambda}}$ .
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.



#### References

- Cardon and Hendel (2001) Asymmetric Information in Health Insurance: Evidence from the National Medical Expenditure Survey. Rand J. Econ. 32 (Autumn): 408-27
- Cawley and Philipson (1999) An Empirical Examination of Information Barriers to Trade in Insurance. A.E.R. 89 (September): 827-46
- Chiappori and Salanie (2000) Testing for Asymmetric Information in Insurance Markets, The Journal of Political Economy, 108, 1; 56-78.
- Cohen (2005) Asymmetric Information and Learning: Evidence from the Automobile Insurance market. Rev. Eco. Statis. 87 (June):197-207.
- Finkelstein and Poterba (2004) Adverse Selection in Insurance markets: Policyholder Evidence from the U.K. Annuity Market. J.P.E. 112 (February): 183-208.
- Thomas, R.G. (2008) Loss Coverage as a Public Policy Objective for Risk Classification Schemes. The Journal of Risk and Insurance, 75(4), pp. 997-1018.
- Thomas, R.G. (2009) Demand Elasticity, Adverse Selection and Loss Coverage: When Can Community Rating Work? ASTIN Bulletin, 39(2), pp. 403-428.

### Questions?

Thank you!

