
Valuing Variable Annuity Guarantees on Multiple Assets

Jonathan Ziveyi1

Joint work with Jose da Fonseca2

The 49th Actuarial Research Conference (ARC)

1Australian School of Business, UNSW Australia.
2Department of Finance, Auckland University of Technology.

1/23



Outline of the Presentation

Basics

Motivation

The GMMB and GMDB riders

Pricing through Fourier transforms

Numerical implementation

Numerical results

2/23



Basics

Variable annuities fulfill the social needs for the aging population by
providing products that deliver certainty of income upon retirement.

Unlike traditional mutual funds and life insurance products, variable
annuity contracts come with embedded guarantees which protect the
policyholder’s savings against unanticipated outcomes.

Guarantees can be underwritten for the accumulation phase, annuity
phase or untimely death of the policyholder, and they fall into two
major groups i.e. GMDB and GMLB.

GMLB can further be categorized into GMxB where where x stands for
maturity (M), income (I ) and withdrawal (W ).

Most of the research has focused on guarantees structured on a single
underlying asset whose dynamics follow the standard geometric
Brownian motion proposed in Black and Scholes (1973).
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Motivation

Milevsky and Posner (2001) derive semi-analytical expressions for the
valuation of GMDB riders using risk-neutral techniques.
Bacinello et al. (2012) devise a general framework for valuing various
types of guarantees using ordinary and least squares Monte Carlo
methods
Contrary to the single underlying asset feature, Ng and Li (2011) note
that in practice most variable annuity guarantees are written on
multiple sub-account funds, and the correlations between funds can be
material.
They propose a multivariate regime-switching framework for modelling
the joint returns on various assets and use Monte-Carlo based
algorithms to price GMMB and GMDB riders when the underlying fund
is made up of the two assets.
We develop an analytical framework for valuing GMMB and GMDB
riders structured on several underlying funds whose dynamics evolve
according to stochastic volatility processes of the affine type proposed
in Heston (1993).
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The Model-The Financial Assets

We consider a fund that involves a choice between two assets such that

F (T ) = H(T , s1(T ), s2(T ))(1−m)T . (1)

Here, H(T , s1(T ), s2(T )) is any payoff function and the risk neutral
dynamics of the two assets

ds1 = rs1dt +
√
v0s1dw0 +

√
v1s1dw1, (2)

ds2 = rs2dt +
√
v0s2dw0 +

√
v2s2dw2, (3)

where

dv0 = κ0(θ0 − v0)dt + σ0
√
v0dz0, (4)

dv1 = κ1(θ1 − v1)dt + σ1
√
v1dz1, (5)

dv2 = κ2(θ2 − v2)dt + σ2
√
v2dz2, (6)

We assume that dw0dz0 = ρ0dt, dw1dz1 = ρ1dt and dw2dz2 = ρ2dt
and all other correlations are assumed to be equal to zero.
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Financial Assets cont...

the correlation between the two assets is given by

dCorr(ln s1, ln s2)t =
v0√

v0 + v1
√
v0 + v2

dt, (7)

which leads to a mean long term correlation around the value
θ0√

θ0+θ1
√
θ0+θ2

. If we restrict the model to a single asset, that is to say

to equations (2), (4) and (5) then this model is similar to the one
proposed in Christoffersen et al. (2009) and its earlier version with
jumps presented in Bates (2000).
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Financial Assets-Characteristic Function

Characteristic function known in closed form, by letting
(x1(τ), x2(τ)) = (ln(s1(τ)), ln(s2(τ))) we obtain

EQ [e iz1x1(τ)+ix2(τ)]

= e iz1x1(τ)+iz2x2(τ)+iz1rτ+iz2rτ+a(τ)+b0(τ)v0(τ)+b1(τ)v1(τ)+b2(τ)v2(τ),
(8)

with τ = T − t and

a(τ) = a0(τ) + a1(τ) + a2(τ), (9)

aj(τ) =
2κjθj
σ2
j

(
τλj− − log

(
λj+ − λ

j
−e
−
√

∆jτ

λj+ − λ
j
−

))
j = 0, 1, 2,

(10)

bj(τ) = −ηj
1− e−

√
∆jτ

λj+ − λ
j
−e
−
√

∆jτ
j = 0, 1, 2, (11)

where aj and bj for j=1,2 are algebraic funtions.
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The Model-The Mortality Process

We adopt the time-inhomogeneous affine mortality process as
presented in Ziveyi et al. (2013) such that

dµ(t; x) = κµ(m(t)− µ(t; x))dt + σµ
√
µ(t; x)dW (t),

(12)

where

σµ = Σµ

√
m(t).

Biffis (2005) chooses m(t) to be a deterministic function given by

m(x + t) =
c

θc
(x + t)c−1, (13)

which is the Weibull mortality law.
The corresponding survival probability can be shown to be

T−tpx+t = eαµ(t,T ;x)−βµ(t,T ;x)µ(x ,t), (14)

where αµ(t,T ; x) and βµ(t,T ; x) are solutions of respective
characteristic PDEs.
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The Variable Annuity Guarantees

We now value GMMB and GMDB riders embedded in variable
annuities.
The GMDB is a natural extension of the GMMB as will be shown
below.
Denoting the fund value at initial time as F (0) and the guarantee rate
as g , the minimum payout at maturity of the contract can be
represented as F (0)egT .
The value of a GMMB rider can be represented as

VM(x , t,T ) = EQ
t

[
1{Tx>T}e

−
∫ T
t r(s)dsH(T )

]
= EQ

t

[
e−

∫ T
t [r(s)+µ(s)]dsH(T )

]
= T−tpx+tEQ

t

[
e−

∫ T
t r(s)dsH(T )

]
= T−tpx+tB(t,T )EQ

t [H(T )]

= T−tpx+tV (t,T ), (15)
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Valuing GMMB on the weighted sum of two assets

Consider the initial fund value of

F (0) = ω1s1(0) + ω2s2(0), (16)

The payoff of the GMMB at maturity time T can then be represented

as H(T ) = (K − (ω1s1(T ) + ω2s2(T )))+ (17)

where K = F (0)egT with g being the guarantee rate.

From equation (15), the value of a GMMB involves the computation of

V (0,T ) = B(0,T )EQ
[
(K − (ω1s1(T ) + ω2s2(T )))+] .

(18)
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Valuing GMMB on the best of two assets

The payoff of the GMMB at maturity time T can then be represented

as H(T ) =
(
F (0)egT −max(s1(T ), s2(T ))

)+
, (19)

where as before K = F (0)egT with g being the guarantee rate.

Without loss of generality we suppose that F (0) = max(s1(0), s2(0)).
Equation (15) then implies that the corresponding value of the GMMB
can be shown to be

V (0,T ) = B(0,T )EQ
[
(K −max(s1(T ), s2(T )))+] . (20)
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Pricing GMMBs through Fourier transforms

The pricing equation can be rewritten as

V (0,T ) = B(0,T )EQ [h(ln s1(T ), ln s2(T ))]

= B(0,T )

∫ +∞

−∞

∫ +∞

−∞
h(x1, x2)f (x1, x2)dx1dx2

(21)

where f (x1, x2) stands for the density of (ln s1(T ), ln s2(T )).
By definition of the characteristic function we have

f (x1, x2) =
1

(2π)2

∫
C2

e−ix1z1−ix2z2φ(0,T , z1, z2)dz1dz2.

Inserting this equality in the equation (21) yields

V (0,T ) =
B(0,T )

(2π)2

∫
C2

φ(0,T , z1, z2)ĥ(z1, z2)dz1dz2 (22)

where

ĥ(z1, z2) =

∫ +∞

−∞

∫ +∞

−∞
e−ix1z1−ix2z2h(x1, x2)dx1dx2. (23)
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Fourier transforms of the payoff functions

In the case of the weighted sum of assets if we assume ω1 > 0 and
ω2 > 0, the Fourier transform of the payoff function can be represented
as

ĥ(z1, z2) =
ωiz2

2 ωiz1
1 K 1−iz1−iz2

(iz2 − 1)(iz2)

Γ(−iz1)Γ(2− iz2)

Γ(2− iz1 − iz2)
, (24)

with =(z2) > 0.

The Fourier transform of the payoff involving the best of two assets
can be represented as

ĥ(z1, z2) = K 1−iz1−iz2

(
1

(iz1 + iz2 − 1)(iz2 − 1)
+

1

(z1 + z2)z2

+
1

z1z2(iz2 − 1)
+

1

z2(z1 + z2)(iz1 + iz2 − 1)

)
(25)

with the constraints that =(z2) > 0 and =(z1 + z2) > 0.
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Pricing GMDBs

From above computations, the value of the guaranteed minimum death
benefit (GMDB) rider can also be obtained

The value of the death benefit H(τx), payable in case the policyholder
dies before time T , can be represented as

VD(x , 0,T ) = EQ
[
e−

∫ τx
0 r(s)dsH(τx)1{t≤τx≤T}

]
= 1{τx>0}

∫ T

0
EQ
[
e−

∫ u
0 r(s)+µ(s)dsµ(u)H(u)

]
du

= 1{τx>0}

∫ T

0
EQ
[
e−

∫ u
0 µ(s)dsµ(u)

]
EQ
[
e−

∫ u
0 r(s)dsH(u)

]
du

= 1{τx>0}

∫ T

0
EQ
[
e−

∫ u
0 µ(s)dsµ(u)

]
V (0, u)du, (26)

where 0 ≤ τx ≤ T and H(u) is the payoff function as presented in
equation (17) for the case of weighted sum of assets or (19) in the
case of the best performing asset.
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Computing the value of the GMDB

To compute the expectation in (26) we define the function

G (t,T , z) = EQ
t

[
ezµ(T )−

∫ T
t µ(s)ds

]
which is similar to the survival

functon with αµ(t,T ; x) and βµ(t,T ; x) being solutions to ODEs.

Once this function is known then the expectation involved in (26) is
given by ∂zG (0, u, z)|z=0.

We implement the discretized version such that

VD(x , 0,T ) =
N∑
i=1

EQ
[
1{τx∈[ti−1 ti ]}e

−
∫ ti

0 r(s)dsH(ti )
]

=
N∑
i=1

EQ
[
1{τx∈[ti−1 ti ]}

]
EQ
[
e−

∫ ti
0 r(s)dsH(ti )

]
=

N∑
i=1

(
ti−1px − tipx

)
V (0, ti ). (27)
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Numerical Implementation of the GMMB

We approximate the double integral in equation (22) with a double
sum over the lattice

Γ =
{
z(k) = (z1(k1), z2(k2))|k = (k1, k2) ∈ {0, · · · ,N − 1}2

}
,

z(k) = −z̄ + kη. (28)

An approximation of the option price component is then given by

V (0,T ) ≈ η2B(0,T )

(2π)2

N−1∑
k1=0

N−1∑
k2=0

φ(0,T , z(k) + iε)ĥ(z(k) + iε),

(29)

where ε ∈ R2 is a vector such that the Fourier transform of the
considered payoff is well defined.
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Distribution of log-returns

Figure: 5Y log-return distribution of two assets for the “Low correlation”
parameter set .
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Distribution of log-returns

Figure: 5Y log-return distribution of two assets for the “High correlation”
parameter set .

18/23



GMMB prices for the High & Low correlation parameter
sets

Low correl. High correl.

g (%) T (in years) T (in years)
5 10 5 10

Age at inception: 50
1 0.14412 0.14659 0.19609 0.19526
2 0.16424 0.17995 0.21848 0.23267
3 0.1866 0.21958 0.24296 0.2762
4 0.21138 0.26638 0.26969 0.32669
5 0.23873 0.32133 0.2988 0.38502

Age at inception: 60
1 0.14189 0.14139 0.19305 0.18833
2 0.1617 0.17357 0.2151 0.22441
3 0.18372 0.21179 0.2392 0.26641
4 0.20811 0.25693 0.26551 0.3151
5 0.23504 0.30993 0.29418 0.37136

Table: GMMB prices for the weighted-sum payoff (ω1 = ω2 = 0.5).
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GMMB prices for the High & Low correlation parameter
sets cont...

Low correl. High correl.

g (%) T (in years) T (in years)
5 10 5 10

Age at inception: 50
1 0.086033 0.096416 0.15051 0.15677
2 0.099328 0.12032 0.16904 0.18854
3 0.11433 0.14926 0.1895 0.22588
4 0.1312 0.18408 0.21202 0.26959
5 0.15015 0.22573 0.23678 0.32056

Age at inception: 60
1 0.084702 0.092995 0.14818 0.15121
2 0.097791 0.11606 0.16643 0.18185
3 0.11256 0.14397 0.18657 0.21787
4 0.12919 0.17755 0.20874 0.26002
5 0.14783 0.21772 0.23311 0.30919

Table: GMMB prices for the best-of payoff.
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GMDB prices for the High & Low correlation parameter
sets

Low correl. High correl.

g (%) T (in years) T (in years)
5 10 5 10

Age at inception: 50
1 0.000422 0.00120 0.000568 0.001586
2 0.000497 0.00155 0.000648 0.001966
3 0.000582 0.00198 0.000738 0.002420
4 0.000678 0.00251 0.000837 0.002957
5 0.000786 0.00313 0.000946 0.003585

Age at inception: 60
1 0.002485 0.00670 0.003342 0.008850
2 0.002928 0.00870 0.003817 0.010995
3 0.003431 0.01116 0.004346 0.013557
4 0.003999 0.01412 0.004932 0.016589
5 0.004636 0.01764 0.005579 0.020139

Table: GMDB prices for the weighted-sum payoff (ω1 = ω2 = 0.5).
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GMDB prices for the High & Low correlation parameter
sets cont...

Low correl. High correl.

g (%) T (in years) T (in years)
5 10 5 10

Age at inception: 50
1 0.000237 0.000735 0.000428 0.001239
2 0.000284 0.000975 0.000493 0.001558
3 0.000339 0.001280 0.000567 0.001945
4 0.000403 0.001664 0.000651 0.002411
5 0.000476 0.002136 0.000744 0.002966

Age at inception: 60
1 0.001393 0.004089 0.0025208 0.006905
2 0.001671 0.005442 0.0029086 0.008702
3 0.001996 0.007169 0.0033458 0.010889
4 0.002373 0.009339 0.0038365 0.013523
5 0.002807 0.012016 0.0043848 0.016661

Table: GMDB prices for the best-of payoff.
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Questions and Comments?
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