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Basic problem: valuing Guaranteed Minimum Death
Benefits (GMDB) in Variable Annuities

Let Tx denote the time-until-death random variable for a life of age x now,
and S(t) be the price of a stock or mutual fund at time t.
Consider a GMDB rider paying the following amount when (x) dies,

max(S(Tx),K),

for a guaranteed amount K.
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for a guaranteed amount K.
Because

max(S(Tx),K) = S(Tx) + max(0,K − S(Tx))
= S(Tx) + [K − S(Tx)]+
= Mutual Fund + Life-contingent Put Option,

we are to value a K-strike put option that is exercised at time Tx.
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Evaluate a life-contingent put option

The problem is to evaluate

E[e−δTx [K − S(Tx)]+],

or more generally,
E[e−δTxb(S(Tx))],

where

b(.) is some death benefit function,

the expectation is taken with respect to some appropriate probability
measure,

δ denotes a force of interest.
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Approximate Tx by exponential distributions

Assuming Tx is independent of the stock price process {S(t)},

E[e−δTxb(S(Tx))]

=E[E[e−δTxb(S(Tx))|Tx]] =
∫ ∞
0

E[e−δtb(S(t)]fTx(t)dt.

The distribution of a continuous positive random variable can be
approximated by linear combinations of exponential distributions
(Dufresne, D., 2007),

fTx(t) ≈
∑
k

akfTk(t) =
∑
k

akλke
−λkt,

where Tk is exponentially distributed with mean 1/λk. Then

E[e−δTxb(S(Tx))] ≈
∑
k

akE[e−δTkb(S(Tk))].
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Exponential case is sufficient

Our problem is reduced to finding

E[e−δT b(S(T ))],

where T is an exponential random variable independent of the stock
price process {S(t)}.
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Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated.

If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+,

we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Model lapses and surrenders using knock-out option

Our problem is to evaluate

E[e−δT [K − S(T )]+].

Policy lapses and surrenders should be incorporated. If the stock price
increases, the put option becomes less valuable, and hence the
policy may lapse or may be surrendered.

Therefore, instead of the payoff [K − S(T )]+, we may want to consider
the following payoff,

1( max
0≤t≤T

S(t) < U)[K − S(T )]+,

where 1(.) is an indicator function and U is a barrier.

This is the payoff of an up-and-out put option.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 8 / 24



Our valuation problem with lapses and surrenders

We aim to determine the following expected present value for an
up-and-out option,

E[e−δT 1( max
0≤t≤T

S(t) < U)b(S(T ))],

where b(.) is a death benefit function, and T is an independent
exponential exercise date with mean 1/λ.
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Model {S(t)} by geometric Brownian motion

Assume {S(t)} evolves according to the Black-Scholes model, i.e.,
S(t) = S(0)eX(t) = S(0)eµt+σZ(t), t ≥ 0, where Z(t) is a standard
Brownian motion.
Let τ be the first time when {S(t)} rises to level U with an initial price
S0 < U .
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Assume {S(t)} evolves according to the Black-Scholes model, i.e.,
S(t) = S(0)eX(t) = S(0)eµt+σZ(t), t ≥ 0, where Z(t) is a standard
Brownian motion.
Let τ be the first time when {S(t)} rises to level U with an initial price
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Value up-and-in option using memoryless property of T

We first value up-and-in option.
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The formula for up-and-in option

E[e−δT 1(τ ≤ T )b(S(T ))] = E[e−δτ1(τ ≤ T )]× E[e−δT b(S(T ))|S(0) = U ]
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1

2
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1 The motivation – basic problem

2 Lapses and surrenders incorporation

3 Main results – value up-and-out option
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Our formula can be generalized – a new approach

E[e−δT 1(τ > T )b(S(T ))] = Vb(S0)−
[S0
U

]θ+
× Vb(U). (1)
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Let τ∗ be the first time when {S(t)} falls to level U with an initial price
S1 > U .

Recall Vg(s) = E[e−δT g(S(T ))|S(0) = s].
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Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
), (2)

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 19 / 24



Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
), (2)

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

The distribution of a continuous positive random variable can be
approximated by linear combinations of exponential distributions.
(Dufresne, D., 2007)

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 19 / 24



Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
), (2)

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

The distribution of a continuous positive random variable can be
approximated by linear combinations of exponential distributions.
(Dufresne, D., 2007)

[S0
U

]−2µ/σ2

does not depend on λ.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 19 / 24



Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
), (2)

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

The distribution of a continuous positive random variable can be
approximated by linear combinations of exponential distributions.
(Dufresne, D., 2007)

[S0
U

]−2µ/σ2

does not depend on λ. Then exponential T on both sides of

formula 2 can be replaced by any positive random variable, and
formula 2 is still valid.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 19 / 24



Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
), (2)

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

The distribution of a continuous positive random variable can be
approximated by linear combinations of exponential distributions.
(Dufresne, D., 2007)

[S0
U

]−2µ/σ2

does not depend on λ. Then exponential T on both sides of

formula 2 can be replaced by any positive random variable, and
formula 2 is still valid.

Hence, a generalization.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 19 / 24



Concluding remarks

Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
),

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Generally valid for all positive random variable T independent of the
stock price process {S(t)}.
In particular, true for fixed exercise date, which is the case of classical
European barrier options. No reflection principle required.

2µ/σ2 – adjustment coefficient in Ruin Theory.

Single and double barrier options with exponentially curved
boundaries. Example, U(t) = Ueθt, t ≥ 0.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 20 / 24



Concluding remarks

Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
),

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Generally valid for all positive random variable T independent of the
stock price process {S(t)}.

In particular, true for fixed exercise date, which is the case of classical
European barrier options. No reflection principle required.

2µ/σ2 – adjustment coefficient in Ruin Theory.

Single and double barrier options with exponentially curved
boundaries. Example, U(t) = Ueθt, t ≥ 0.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 20 / 24



Concluding remarks

Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
),

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Generally valid for all positive random variable T independent of the
stock price process {S(t)}.
In particular, true for fixed exercise date, which is the case of classical
European barrier options. No reflection principle required.

2µ/σ2 – adjustment coefficient in Ruin Theory.

Single and double barrier options with exponentially curved
boundaries. Example, U(t) = Ueθt, t ≥ 0.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 20 / 24



Concluding remarks

Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
),

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Generally valid for all positive random variable T independent of the
stock price process {S(t)}.
In particular, true for fixed exercise date, which is the case of classical
European barrier options. No reflection principle required.

2µ/σ2 – adjustment coefficient in Ruin Theory.

Single and double barrier options with exponentially curved
boundaries. Example, U(t) = Ueθt, t ≥ 0.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 20 / 24



Concluding remarks

Generalized formula for up-and-out option

For S0 < U ,

E[e−δT 1(τ > T )b(S(T ))] = Vg(S0)−
[S0
U

]−2µ/σ2

× Vg(
U2

S0
),

where Vg(s) = E[e−δT g(S(T ))|S(0) = s] and g(s) = 1(s < U)b(s).

Generally valid for all positive random variable T independent of the
stock price process {S(t)}.
In particular, true for fixed exercise date, which is the case of classical
European barrier options. No reflection principle required.

2µ/σ2 – adjustment coefficient in Ruin Theory.

Single and double barrier options with exponentially curved
boundaries. Example, U(t) = Ueθt, t ≥ 0.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 20 / 24



References

Gerber, H.U., Shiu, E.S.W., Yang, H., 2012. Valuing equity-linked
death benefits and other contingent options: a discounted density
approach. Insurance: Mathematics and Economics 51, 73-92.

Gerber, H.U., Shiu, E.S.W., Yang, H., 2013. Valuing equity-linked
death benefits in jump diffusion models. Insurance: Mathematics and
Economics, 53, 615-623.

Dufresne, D., 2007. Fitting combinations of exponentials to probability
distributions. Applied Stochastic Models in Business and Industry 23,
23-48.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 21 / 24



Thank you!
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Find E[e−δτ1(τ ≤ T )]

Let z be such that
{e−δt1(t ≤ T )[S(t)]z}t≥0

is a martingale.
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Find E[e−δτ1(τ ≤ T )]

Let z be such that
{e−δt1(t ≤ T )[S(t)]z}t≥0

is a martingale.

Condition:

E[e−δt1(t ≤ T )[S(t)]z] = e−δ01(0 ≤ T )[S(0)]z, for any fixed t > 0
= [S(0)]z

⇔ e−δte−λteσ
2z2t/2+µzt = 1

⇔ 1

2
σ2z2 + µz − (λ+ δ) = 0

Denote the two roots by θ+ > 0 and θ− < 0.
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Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .

Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem,

if we replace fixed t by τ , the
condition for martingale still holds for θ+,

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

E[e−δτ1(τ ≤ T )[S(τ)]θ+ ] = [S(0)]θ
+

,

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

E[e−δτ1(τ ≤ T )[S(τ)]θ+ ] = [S(0)]θ
+

,

E[e−δτ1(τ ≤ T )[ U ]θ
+
] = [S0]

θ+ ,

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

E[e−δτ1(τ ≤ T )[S(τ)]θ+ ] = [S(0)]θ
+

,

E[e−δτ1(τ ≤ T )[ U ]θ
+
] = [S0]

θ+ ,

⇔ E[e−δτ1(τ ≤ T )] =
[S0
U

]θ+
.

Xiao Wang (U of Iowa) Valuing GMDB with Knock-out Options ARC @ UCSB 2014 24 / 24



Find E[e−δτ1(τ ≤ T )] cont’d

Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

E[e−δτ1(τ ≤ T )[S(τ)]θ+ ] = [S(0)]θ
+

,

E[e−δτ1(τ ≤ T )[ U ]θ
+
] = [S0]

θ+ ,

⇔ E[e−δτ1(τ ≤ T )] =
[S0
U

]θ+
.

Similarly, define τ∗ as the first time when {S(t)} falls to level U with an
initial price S1 > U .
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Recall that τ is the first time when {S(t)} rises to level U .
Because of Optional Sampling Theorem, if we replace fixed t by τ , the
condition for martingale still holds for θ+,

E[e−δτ1(τ ≤ T )[S(τ)]θ+ ] = [S(0)]θ
+

,

E[e−δτ1(τ ≤ T )[ U ]θ
+
] = [S0]

θ+ ,

⇔ E[e−δτ1(τ ≤ T )] =
[S0
U

]θ+
.

Similarly, define τ∗ as the first time when {S(t)} falls to level U with an
initial price S1 > U . Then

E[e−δτ
∗
1(τ∗ ≤ T )] =

[S1
U

]θ−
.
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