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i. Motivations

The following context serves as a motivation
We consider a portfolio of homogeneous credit risks
According to S&P�s ratings, for risks with credit rating of single B :

Probability of default = 0.049
Pearson�s correlation coe¤cient between the occurences of two risks =
0.00156

Is this correlation negligible ?
Can we assume that the risks are independent ?
If we ignore it, does it have an impact on the riskiness of the portfolio ?

To answer these questions :
We use the concept of sequence of exchangeable random variables
We consider an extension of the classical discrete-time risk model, with
exchangeability

This talk involves two important contributions by Bruno De Finetti :
Representation Theorem for sequence of exchangeable random variables
Classical discrete-time risk model

The obtained results can be applied in various contexts
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1. A brief historical parenthesis on Bruno De Finetti

Actuary, Probabilist, Statistician (June 13, 1906 - July 20, 1985)

Actuary at one of world�s largest insurance company : Assicurazioni
Generali

Chair on "Financial Mathematics" in Trieste University
Chair on "Financial Mathematics" and a Chair on "Calculus of
Probabilities" in Sapienza University of Rome
He has made signi�cant contributions on probability, statistic and risk
theory
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2. Sequence of exchangeable rvs

Let X = fXk , k 2 N+g be a sequence of rvs

De�nition
X is said to be sequence of exchangeable rvs if�

Xσ(1),Xσ(2), ...,Xσ(k )

�
� (X1,X2, ...,Xk ) ,

for k 2 f2, 3, ...g and for any permutation�
Xσ(1),Xσ(2), ...,Xσ(k )

�
of

(X1,X2, ...,Xk )
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2. Sequence of exchangeable rvs

Representation Theorem (De Finetti).
Let X = fXk , k 2 N+g be a sequence of exchangeable rvs
The cdf of (X1,X2, ...,Xk ) can be represented as

FX1,...,Xk (x1, ..., xk ) =
Z
FX1,...,Xk jΘ=θ (x1, ..., xk )dFΘ (θ) ,

for k = 2, 3, ...
The reverse is also true

The joint distribution of (X1,X2, ...,Xk ) is de�ned by a common
mixture
Rv Θ :

underlying common mixing rv with cdf FΘ
unobservable rv Θ
random environment

Important for the in�nite sequence :

Cov (Xi ,Xj ) � 0
for any pair (i , j)
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3. Portfolio of n exchangeable risks
3.1 Basic de�nitions

Let I = (I1, ..., In) be a vector of Bernoulli exchangeable rvs
Bernoulli rv Ii : occurrence rv

Default of ith risk ) Ii = 1
No-default ) Ii = 0

Let Θ be a mixing rv de�ned on [0, 1], with cdf FΘ.
Conditional joint pmf of I :

Pr (I1 = i1, ..., In = in jΘ = θ) =
n

∏
j=1

θij (1� θ)1�ij ,

for (i1, ..., in) 2 f0, 1gn and θ 2 ]0, 1[
Important application in QRM : "One Factor Bernoulli Risk Model"
for homogeneous credit risks
See e.g. Joe (1997), Cossette et al. (2002), McNeil et al. (2005),
Cousin & Laurent (2008)
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3. Portfolio of n exchangeable risks
3.2 Mixing rv

Rv Θ : induces a dependence relation between the occurrence rvs

When θ ", Pr (Ij = 1jΘ = θ) = θ ", for all j = 1, 2, ..., n
De�nition :

ζk = Pr (I1 = 1, ..., Ik = 1)

for k = 1, 2, ..., n

We have

ζk =
Z 1

0
Pr (I1 = 1, ..., Ik = 1jΘ = θ)dFΘ (θ) =

Z 1

0
θkdFΘ (θ)

= E
h
Θk
i

Covariance : Cov (I1, I2) = ζ2 � ζ21

Pearson�s correlation coe¤cient : ρP (I1, I2) =
ζ2�ζ21
ζ1�ζ21

2 [0, 1]
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3. Portfolio of n exchangeable risks
3.3 Number of defaults

Let us focus on the nb of defaults for the portfolio : rv Nn = ∑n
j=1 Ij

Conditional pmf of Nn :

Pr(Nn = k j Θ = θ) =

�
n
k

�
θk (1� θ)(n�k )

(pmf of the binomial distribution)
Unconditional pmf of Nn :

Pr (Nn = k) =
Z 1

0
Pr(N = k j Θ = θ)dFΘ (θ)

=

�
n
k

� Z ∞

0
θk (1� θ)(n�k ) dFΘ (θ)

=

�
n
k

� n�k
∑
j=0

�
n� k
j

�
(�1)j ζk+j

(pmf of the mixed-binomial distribution)
(see e.g. Bowman and George (1995), Cossette et al. (2002))
Relations :

E [Nn ] = nE [Θ]
E
�
N2n
�
= nE [Θ] +

�
n2 � n

�
E
�
Θ2�

etc.
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3. Portfolio of n exchangeable risks
3.4 Distribution of the number of defaults

We want to �nd the distribution of Nn in order to derive risk
quantities related to Nn
First, how to model (I1, ..., In) ?

Several possible approaches were considered

Two approaches considered in the literature :

Approach #1 : Assume a distribution for Θ (e.g. Beta distribution)
Approach #2 : Use exchangeable copulas (e.g. Clayton, Frank,
Gumbel, etc.)

In this section, we propose another approach based only on the partial
information available
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

Our proposed approach :

We derive moment bounds on risk quantities related to Nn
We assume m known moments for Θ () m known moments for Nn)
Important : no distribution is speci�ed for Θ
Equivalently : no joint distribution is speci�ed for (I1, ..., In)
Inspired from results obtained by Courtois and Denuit (2009)
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

Basic de�nitions for the approach :

We assume that the �rst m moments of Θ are �xed :

E [Θ] = µj , for j = 1, ...,m

Let An = f0, 1, 2, ..., ng be the support of Nn
Let Bl =

n
0
l ,
1
l ,
2
l , ...,

l
l

o
be the support of Θ

Let D (ζ1, ..., ζm ;Bl ) be the class of all rvs Θ with support Bl
SL premium :

πΘ

�
k
l

�
= E

h
max

�
Θ� k

l ; 0
�i
= ∑∞

j=k

�
1� FΘ

�
j
l

��
, for kl 2 Bl

Let Nn be the class of all mixed-binomial rvs Nn de�ned with
Θ 2 D (ζ1, ..., ζm ;Bl )
There is a one-to-one relation between Θ and Nn
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

General steps of the approach :

Step 1 of 5 : For each k
l 2 Bl , �nd the minimal πm,min

�
k
l

�
and the

maximal πm,max
�
k
l

�
values of SL premiums such that

πm,min

�
k
l

�
� πΘ

�
k
l

�
� πm,max

�
k
l

�
for all Θ 2 D (ζ1, ..., ζm ;Bl )
To �nd those values, we walk on the "extermal points" of the space
D (ζ1, ..., ζm ;Bl )
Courtois and Denuit (2009) gives the expressions of πm,min and
πm,max, for m = 2, 3
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

General steps of the approach :

Step 2 of 5 : De�ne two rvs Θ(m,min) and Θ(m,max) whose cdfs

FΘ(m,min) and FΘ(m,max)

are derived from
πm,min and πm,max

with

FΘ(m,min)

�
k
l

�
= πm,min

�
k
l

�
� πm,min

�
k + 1
l

�
FΘ(m,min)

�
k
l

�
= πm,min

�
k
l

�
� πm,min

�
k + 1
l

�
for k = 0, 1, 2, ..., l � 1. Also, FΘ(m,min) (1) = FΘ(m,min) (1) = 1
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

General steps of the approach :

Step 3 of 5 : It implies

Θ(m,min) �icx Θ �icx Θ(m,min)

for all
Θ 2 D (ζ1, ..., ζm ;Bl ) ,

where "�icx" = increasing convex order
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

General steps of the approach :

Step 4 of 5 : When

Θ(m,min) �icx Θ �icx Θ(m,min)

for all
Θ 2 D (ζ1, ..., ζm ;Bl ) ,

it implies that
N(m,min)n �icx Nn �icx N

(m,min)
n

for all Nn 2 Nn
N(m,min)n is de�ned by Θ(m,min)

N(m,max)n is de�ned by Θ(m,max)
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3. Portfolio of n exchangeable risks
3.5 Moment bounds for the number of defaults

General steps of the approach :

Step 5 of 5 : From Denuit et al. (2005), it follows that

TVaRκ

�
N(m,min)n

�
� TVaRκ (Nn) � TVaRκ

�
N(m,max)n

�
for all κ 2 (0, 1) and for all

Nn 2 Nn

Additional comments :

E
h
N(m,min)n

i
= E

h
N(m,max)n

i
= E [Nn ] = nζ1
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3. Portfolio of n exchangeable risks
3.5 Numerical illustration of the approach

Numerical Illustration with m = 2 �xed moments

We consider an homogeneous portfolio with n = 10000 risks

Probabilities : ζ1 = 0.049; ζ2 = 0.00313

Pearson�s correlation coe¤cient : ρP (I1, I2) = 0.0156
E [N1000 ] = 490
Var (N10000) = 73359 (vs variance under independence = 466)

CV (N10000) =
p
73359
490 = 0.55 (independence )

p
466
490 = 0.04)

Θ 2 A50 =
�
0, 150 ,

2
50 , ...,

50
50

	
Source : Real data from 20 years of Standard & Poor�s default data
(see Table 8.6, page 365, in McNeil et al. (2005))
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3. Portfolio of n exchangeable risks
3.5 Numerical illustration of the approach

Values of TVaRκ

�
N (m,min)n

�
, TVaRκ

�
N (m,max)n

�
and

TVaRκ

�
N (ind )n

�
with N (ind )n � Binom (n, q)

κ TVaRκ

�
N (ind )n

�
TVaRκ

�
N (m,min)n

�
TVaRκ

�
N (m,max)n

�
0 490 490 490

0.5 507.22 584.06 759.66
0.9 528.22 648.64 1299.40
0.99 548.45 794.02 3015.69
0.995 553.54 820.51 4054.77
0.999 564.21 847.25 8439.65
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3. Portfolio of n exchangeable risks
3.5 Illustration of the approach

Values of TVaRκ

�
N (m,min)n

�
, TVaRκ

�
N (m,max)n

�
and

TVaRκ

�
N (ind )n

�
with N (ind )n � Binom (n, q)
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3. Portfolio of n exchangeable risks
3.6 Additional comments

It is possible to consider more than 2 moments

We can add the assumption of unimodality for Θ
The approach can be adapted to derive bounds on VaR
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4. Discrete-Time Risk Models with exchangeability

In this section, we introduce exchangeability in a special case of the
classical discrete-rime risk model

It leads to an application of ruin theory for large portfolios of
exchangeable risks
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4. A discrete-time risk model with exchangeability
4.1 Classical Discrete-Time Risk Model

Proposed by De Finetti (1957)

Title of his paper : "Su un�impostazione alternativa della teoria
collettiva del rischio"

In English : "An alternative approach in the theory of collective risk"

Presented at the International Congress of Actuaries

A standard model in risk theory (see e.g. Bühlmann (1970) and
Dickson (2005) for details)
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4. A discrete-time risk model with exchangeability
4.1 Classical Discrete-Time Risk Model

We consider a portfolio of an insurance company or any �nancial
institution

W = fWk , k 2 N+g : sequence of iid rvs
Rv Wk : aggregate claim amount in period k 2 N+

π = (1+ η)E [W ] : premium income per period

Rv Lk = (Wk � π) = net loss in period k 2 N+

Lk > 0 : loss
Lk < 0 : gain

Strictly positive security margin : η > 0

E [Lk ] = E [Wk ]� π < 0 (since η > 0), for k 2 N+
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4. A discrete-time risk model with exchangeability
4.1 Classical Discrete-Time Risk Model

Surplus process : U = fUk , k 2 Ng
Uk = surplus level at time k 2 N

U0 = u = initial surplus

For k 2 N+ : Uk = Uk�1 + π �Wk = u �∑k
j=1 Lj

Time of ruin : rv

τu =

(
inf
k2N+

fk,Uk < 0g , if U goes below 0 at least once
∞, if U never goes below 0

Finite-time ruin probability : ψ (u, n) = Pr (τu � n)
In�nite-time ruin probability : ψ (u) = Pr (τu < ∞)
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4. A discrete-time risk model with exchangeability
4.1 Classical Discrete-Time Risk Model

A typical sample path of the surplus process U
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4. A discrete-time risk model with exchangeability
4.2. Compound binomial risk model with exchangeability

The compound binomial risk model is a special case of the classical
discrete-time risk model

Additional assumptions for the compound binomial risk model :

premium income π = 1

Wk =

�
Xk , Ik = 1
0, Ik = 0

I = fIk , k 2 N+g : sequence of iid rvs (Ik � I � Bern (q))
X = fXk , k 2 N+g : sequence of iid rvs (Xk � X 2 N+)
I and X are independent
initial surplus u 2 N

references : e.g. Gerber (1988), Shiu (1989), Willmot (1991),
DeVylder & Marceau (1996), etc.

Extension :

I = sequence of exchangeable rvs
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4. Discrete-Time Risk Models with exchangeability
4.2. Compound binomial risk model with exchangeability

Rv Θ : common mixing rv with cdf FΘ

Given Θ = θ, fIk jΘ = θ, k 2 N+g = sequence of conditionally
independent and id rvs

Notation:

qθ = E [Ik jΘ = θ] = θ
(Ik jΘ = θ) � Bern (qθ)
ψθ (u) : conditional ruin probability given that Θ = θ

Recall : qθ " as θ "
Consequence : there is a θ� such that

when θ > θ�, qθ � E [X ] > π = 1 =) ψθ (u) = 1, for all u 2 N

when θ < θ�, qθ � E [X ] < π = 1 =) ψθ (u) can be computed
recursively
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4. A discrete-time risk model with exchangeability
4.2. Compound binomial risk model with exchangeability

When θ < θ�, recursive relation for ψθ :

u = 0: ψθ(0) =
qθE [X ]�qθ
1�qθ

u 2 N+ : ψθ (u) =
ψθ(u�1)�qθ ∑uj=1 ψθ(u�j )fX (j )�qθF X (u+1)

1�qθ

ψ (u) : unconditional ruin probability

ψ (u) =
Z ∞

0
ψθ (u)dFΘ (θ)

=
Z θ�

0
ψθ (u)dFΘ (θ) + FΘ (θ

�)

The model is also called the "Mixed compound binomial risk model"
(Cossette et al. (2004))
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4. A discrete-time risk model with exchangeability
4.3. Application of the CB risk model with exchangeability

We propose to apply the CB risk model with exchangeability for an
homogeneous portfolio of n credit risks

As mentioned earlier, ψ (u, n) = ruin probability where n is the
number of periods

Here, n is assumed to be the number of risks

We assume that the size n of the portfolio is huge (n! ∞)
It implies that we consider the computation of ψ (u)

We use ruin theory to illustrate the dangerousness associated with a
huge homogeneous portfolio of credit risks

See e.g. Seal (1974) for a similar approach for a life insurance
portfolio of independent risks (n = nb of contracts)
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4. A discrete-time risk model with exchangeability
4.3. Application of the CB risk model with exchangeability

Bernoulli rv Ii : occurrence rv for ith risk

Default ) Ii = 1
No-default ) Ii = 0

Loss rv Li = Wi � π = Wi � 1
Assumption : when default, complete loss (Xi = b)

Interpretation :

At time 0, a loan of b� 1 is issued to an entity
This entity has to reimburse b at time 1
At time 1, if no default, b is reimbursed ) net loss = Li = �1 (gain)
At time 1, if default, 0 is reimbursed ) net loss = Li = b� 1 (loss)

Condition : π = 1 > q � b = (prob of default)� b
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4. A discrete-time risk model with exchangeability
4.3. Application of the CB risk model with exchangeability

Two paths of the surplus process (given Θ = θ)
Black : θ < θ�

Red : θ > θ�
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4. A discrete-time risk model with exchangeability
4.4. Application of the CB risk model with exchangeability �Numerical example

We compute ψ (u) with Θ � Beta (α, β)
Real data from 20 years of Standard & Poor�s default data
(see Table 8.6, page 365, in McNeil et al. (2005))

Probabilities for S&P�s rating B:

q = ζ1 = 0.049; ζ2 = 0.00313
ρP (I1, I2) =

0.00313�0.0492
0.049�0.0492 = 0.0156

=) Θ � Beta (α, β) with α = 3.08 and β = 59.8
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4. A discrete-time risk model with exchangeability
4.4. Application of the CB risk model with exchangeability �Numerical example

Recall : b� q < π = 1

Three cases :

#1: If b = 15 ) 15� 0.049 = 0.735 < 1 (loan = 14)
#2: If b = 18 ) 18� 0.049 = 0.882 < 1 (loan = 17)
#3: If b = 20 ) 20� 0.049 = 0.98 < 1 (loan = 19)

If the credit risks were independent, we should expect that ψ (u)
tends to 0 as u " ∞
However, since the (credit) risks are exchangeable, we will see that
ψ (u) will not tend to 0 as u " ∞
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4. A discrete-time risk model with exchangeability
4.4. Application of the CB risk model with exchangeability �Numerical example

Case #1 : b = 15

Values : ruin probabilities

Initial capital u ψ (u) (exch.) ψ (u) (indep)
0 0.6563 0.7213
50 0.3157 0.0997
100 0.2724 0.0124
200 0.2502 0.0002
500 0.2370 0
∞ 0.2301 0
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4. A discrete-time risk model with exchangeability
4.4. Application of the CB risk model with exchangeability �Numerical example

Figure : Ruin probabilities
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4. A discrete-time risk model with exchangeability
4.4. Application of the CB risk model with exchangeability �Numerical example

For a huge portfolio (n! ∞) and a large initial capital (u ! ∞):

lim
u!∞

ψ (u) = Pr (Θ > θ�)

Additional results :

case b Pr (Θ > θ�)
1 15 0.2301
2 18 0.3491
3 20 0.4295

Similar results for risks with credit rating of double B or triple C

For a portfolio of exchangeable risks, diversi�cation based on the
assumption of independence is not possible

Remark : We may consider other ruin related quantities
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5. Conclusion

Questions ?

Thank you for your attention !
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Appendix. Standard & Poor�s Ratings �De�nitions

BB: An obligor rated �BB�is less vulnerable in the near term than
other lower-rated obligors. However, it faces major ongoing
uncertainties and exposure to adverse business, �nancial, or economic
conditions, which could lead to the obligor�s inadequate capacity to
meet its �nancial commitments.

B: An obligor rated �B�is more vulnerable than the obligors rated
�BB�, but the obligor currently has the capacity to meet its �nancial
commitments. Adverse business, �nancial, or economic conditions will
likely impair the obligor�s capacity or willingness to meet its �nancial
commitments.

CCC: An obligor rated �CCC�is currently vulnerable, and is dependent
upon favorable business, �nancial, and economic conditions to meet
its �nancial commitments.

Cited from S&P (2011).
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