A new approach for stochastic ordering of risks

Liang Hong, PhD, FSA

Department of Mathematics

Robert Morris University

Presented at 2014 Actuarial Research Conference UC Santa Barbara

July 16, 2014

- How to compare two given random variables?
- Extensively studied in actuarial science, operations research, quantitative finance, reliability theory, etc.
- Our focus: actuarial science and quantitative finance.
- This topic has attracted attention from researchers for decades.

- A comprehensive reference on the general theory: Marshall, A. and Olkin, I. (1979). *Inequalities: Theory of Majorization and Its Applications*, Academic Press, New York.
- Review papers in actuarial science:
 - Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D. (2002 a). The concept of comonotonicity in actuarial science and finance: Theory, *Insurance: Mathematics and Economics*, 31(1), 3-33.
 - Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D. (2002 b). The concept of comonotonicity in actuarial science and finance: Application, *Insurance: Mathematics and Economics*, 31(1), 133-161.

- Monographs in actuarial science:
 - 1. van Heerwaarden, A.E. (1991). Ordering of Risks: theory and actuarial applications, Tinbergen Institute Research Series, No. 20, Tinbergen Institute, Amsterdam.
 - Denuit, M. Dhaene, J., Goovaets, M. and Kaas, R. (2005). Actuarial Theory for Dependent Risks: Measures, Orders and Models, Wiley. Hoboken, New Jersey.

- We will focus on three popular stochastic orders.
 - 1. stochastic dominance order;
 - 2. stop-loss order;
 - 3. convex order.

A random variable X is said to precede another random variable Y in stochastic dominance sense, written as $X \leq_{st} Y$, if and only if

$$S_X(t) \leq S_Y(t)$$
, for all $t \in R$,

where S_X and S_Y are the survival functions of X and Y, respectively.

A random variable X is said to precede another random variable Y in stochastic loss order, written as $X \leq_{sl} Y$, if and only if

$$E[(X-d)_+] \leq E[(Y-d)_+], \quad \text{for all } d \in R.$$

A random variable X is said to precede another random variable Y in convex order, written as $X \leq_{cx} Y$, if and only if $X \leq_{sl} Y$ and E[X] = E[Y].

- Many other possible stochastic orders on the set of risks.
- All previous works studied properties of stochastic orders on a case by case basis.
- Our goal: introduce a new approach and a uniform framework.
- Main mathematical tool: Riesz space theory, a branch of functional analysis.

- Many stochastic orders are partial orders and the underlying space of random variables display a vector space structure.
- Recall that a *binary relation* ≤ on a non-empty set *L* is a subset of *L* × *L*. A binary relation ≤ on a set *L* is said to be a *partial order* if it has the following three properties:

(Reflexivity) $x \leq x$ for $x \in L$; (Antisymmetry) if $x \leq y$ and $y \leq x$, then x = y; (Transitivity) if $x \leq y$ and $y \leq z$, then $x \leq z$.

• For an alternative definition (unnecessary for our purpose), see *Set Theory* (2011) by Kenneth Kunen, College Publications.

Why Riesz space theory?

- A natural choice because Riesz space theory (also called vector lattice theory) studies a broad class of partially ordered vector spaces under the most general framework.
- First introduced into economics in 1990's. Aliprantis, C.D., Brown, D. J. and Burkinshaw, O. (1987), Edgewoth equilibria, *Econometrica*, 55, 1109-1137.
- For a detailed list of relevant references, see the references listed in Aliprantis, C.D., Brown, D. J. and Burkinshaw, O. (1990), *Existence and Optimality of Competitive Equilibria*, Springer, Berlin, Heidelberg, New York.
- Riesz space theory has not been introduced to actuarial science yet.

Two potential advantages:

1. Simple and clean proofs of complicated theorems;

2. An opportunity of studying different stochastic orders under a unified framework.

Notations and Setup

- Our discussion will always be based on a given probability space (Ω, \mathcal{F}, P) unless stated otherwise.
- A *risk* is defined to be a nonnegative random variable with finite mean.
- Two *P*-a.s. equal random variables will be regarded as equivalent, that is, we consider equivalent classes of *P*-almost surely equal random variables.
- Define

$$S = \{X \mid X \text{ is a random variable}\},\$$

and

$$R = \{X \mid X \text{ is a risk}\}.$$

Notations and Setup

- A partially ordered set *L* is called a *lattice* if the infimum and supremum of any pair of elements in *L* exist.
- A real vector space L is called an *ordered vector space* if its vector space structure is compatible with the order structure in a manner such that

(a) if
$$x \leq y$$
, then $x + z \leq y + z$ for any $z \in L$;

(b) if
$$x \leq y$$
, then $\alpha x \leq \alpha y$ for all $\alpha \geq 0$.

- An ordered vector space is called a *Riesz space* (or a *vector lattice*) if it is also a lattice at the same time.
- For two elements x and y in a Riesz space, x ∨ y and x ∧ y denotes sup{x, y} and inf{x, y}, respectively.
- A vector subspace of a Riesz space is said to be a *Riesz subspace* if it is closed under the lattice operation ∨.

- If L is an ordered vector space, $x \in L$ and $A \subset L$, then the notation $x \leq A$ means $x \leq y$ for every $y \in A$.
- The notation $A \leq x$ should be interpreted similarly.
- An ordered vector space L is said to satisfy the *interpolation property* if for every pair of nonempty finite subsets E and F of L there exists a vector x ∈ L such that E ≤ x ≤ F.

- 1. Separation theorems for three stochastic orders;
- 2. Decomposition theorems for three stochastic orders;
- 3. The countable approximation property of risks.

Separation theorems

• Separation theorems for stochastic orders have appeared in various forms in the actuarial literature. For instance,

Theorem 4.3.1 of van Heerwaarden, A.E. (1991). *Ordering of Risks: theory and actuarial applications*, Tinbergen Institute Research Series, No. 20, Tinbergen Institute, Amsterdam.

Theorem 3.7 of Müller, A. (1996). Ordering of risks: A comparative study via stop-loss transforms, *Insurance: Mathematics and Economics*, 17, 215-222.

Proposition 3.4.18 of Denuit, M. Dhaene, J., Goovaets, M. and Kaas, R. (2005). *Actuarial Theory for Dependent Risks: Measures, Orders and Models*, Wiley. Hoboken, New Jersey.

• All existing results only "separate" two risks.

Theorem (Separation theorem for stochastic dominance order)

Let R_1 and R_2 be two finite subsets of risks satisfying $X \leq_{st} Y$ for any $X \in R_1$ and $Y \in R_2$. Then there exists a risk Z such that

$$X \leq_{st} Z \leq_{st} Y$$
,

for any $X \in R_1$ and $Y \in R_2$. In particular, if X and Y are two risks satisfying $X \leq_{st} Y$, then there exists a risk Z such that

$$X \leq_{st} Z \leq_{st} Y$$
.

• It is a standard result that every Riesz space has the interpolation property.

See, for example, Riesz, F. (1940). Sur quelques notions fondamentals dans la theorie générale des opérations linéaires, *Annals of Mathematics*, 41, 174-206.

- Thus, it suffices to show that (S, \leq_{st}) is a Riesz space.
- It is easy to see that (S, \leq_{st}) is an ordered vector space.
- It remains to show that inf{X, Y} ∈ S for any pair X, Y ∈ S.
 Caution. The infimum above is taken with respect to the partial order ≤_{st} not the usual order.

• Let X and Y be two elements in S. For any $t \in R$, we have

 $S_X(t) \wedge S_Y(t) \leq S_X(t)$ and $S_X(t) \wedge S_Y(t) \leq S_Y(t)$,

where \leq stands for the usual order on the set of real numbers.

- It follows from the definition of \leq_{st} that min $\{X, Y\} \leq_{st} \{X, Y\}$.
- This shows that $\min\{X, Y\}$ is a lower bound of $\{X, Y\}$ in (S, \leq_{st}) .

Proof of the separation theorem

• Next, let
$$Z \in S$$
 and $Z \leq_{st} \{X, Y\}$.

• Then $\forall t \in R$,

 $S_Z(t) \leq S_X(t)$ and $S_Z(t) \leq S_Y(t)$,

that is, $S_Z(t) \leq S_X(t) \wedge S_Y(t)$ for all $t \in R$.

• This shows that $\min\{X, Y\}$ is the greatest lower bound of $\{X, Y\}$ in (S, \leq_{st}) .

• Therefore,
$$(S, \leq_{st})$$
 is a Riesz space.

- The above theorem "separates" two subsets of risks.
- Note that (R, ≤_{st}) is not an ordered vector space. We often need to tactically consider (S, ≤_{st}).
- If we replace ≤_{st} by any partial order, such as the stop-loss order or the convex order, the proof will go through. This yields a separation theorem for any partial order on *R*.
- The original proof of the separation theorem for the convex order is quite lengthy; our new proof is short and elegant and our result is stronger. This shows the advantage of this Riesz space approach.

Theorem (Decomposition theorem for stochastic dominance order)

If $X, Y_1, ..., Y_n$ are risks and $X \leq_{st} Y_1 + ... + Y_n$ in (S, \leq_{st}) , then there exist risks $X_1, ..., X_n$ in (S, \leq_{st}) such that $X_i \leq_{st} Y_i, (i = 1, ..., n)$ and

$$X = X_1 + \ldots + X_n.$$

Theorem (Decomposition theorem for stop-loss order)

If $X, Y_1, ..., Y_n$ are risks and $X \leq_{sl} Y_1 + ... + Y_n$ in (S, \leq_{sl}) , then there exist risks $X_1, ..., X_n$ in (S, \leq_{sl}) such that $X_i \leq_{sl} Y_i, (i = 1, ..., n)$ and

$$X = X_1 + \ldots + X_n.$$

Theorem (Decomposition theorem for convex order)

If $X, Y_1, ..., Y_n$ are nonnegative risks and $X \leq_{cx} Y_1 + ... + Y_n$ in (S, \leq_{cx}) , then there exist risks $X_1, ..., X_n$ in (S, \leq_{cx}) such that $X_i \leq_{cx} Y_i, (i = 1, ..., n)$ and

$$X = X_1 + \ldots + X_n.$$

Liang Hong, PhD, FSA (Robert Morris UniveA new approach for stochastic ordering of risl

Proofs of the three decomposition theorems

• All the three decomposition theorems follow from the following standard result.

Theorem

If (S, \preceq) is an ordered vector space, then the following statements are equivalent.

- (1) S has the interpolation property.
- (2) S has the decomposition property, that is, if $X, Y_1, ..., Y_n$ are nonnegative elements in S and $X \leq Y_1 + ... + Y_n$, then there exist nonnegative elements $X_1, ..., X_n$ in S such that

$$X = X_1 + \ldots + X_n.$$

• Different from traditional approach, here we "killed three birds with one stone!" This is another advantage of this unified approach.

The countable approximation property of risks

• There is a striking (may not be well-known) result in probability theory.

Definition

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{H} be a non-empty family of random variables. A random variable η is called the **essential infimum** of \mathcal{H} if η satisfies the following conditions:

- (i) $\xi \geq \eta$ a.s. for all $\xi \in \mathcal{H}$,
- (ii) If η' is another random variable satisfying (i) (i.e. $\xi \ge \eta' \ a.s.$ for all $\xi \in \mathcal{H}$), then $\eta \ge \eta' \ a.s.$.

Theorem

 Let H be a non-empty family of random variables, then the essential supremum (respectively infimum) of H exists, and there are at most countably many element (ξ_n)_n of H such that

$$ess \ sup \ \mathcal{H} = \lor_n \xi_n \ (respectively \ ess \ inf \ \mathcal{H} = \land_n \xi_n). \tag{1}$$

(2) In addition, if H is closed under the operation \lor (respectively \land), i.e.

 $\xi, \eta \in \mathcal{H} \Rightarrow \exists f \in \mathcal{H} \text{ such that } f = \xi \lor \eta \text{ (respectively } f = \xi \land \eta).$

then the sequence $(\xi)_n$ can be chosen to be monotone increasing (respectively decreasing).

- Can this property extended to (R, \preceq) ?
- If so, any risk under a partial order can be approximated by a sequence of risks!
- We show the answer is affirmative.
- We call such a property the countable approximation property of risks.

Theorem (Countable approximation property of risks)

Every risk can be approximated by a sequence of risks under a partial order, in particular, under stochastic dominance order, stop-loss order and convex order.

Preparation for the proof: more terminologies

- A subset *M* of a Riesz space *L* is said to be *solid* if $|x| \le |y|$ and $y \in S$ implies $x \in M$.
- A solid subspace of a Riesz space is called an *ideal*.
- A Riesz space *L* is said to have the *countable super property*, that is, every subset of *S* having a supremum contains an at most countable subset having the same supremum.
- It is known that if *L* is Riesz space having the countable super property, then any ideal in *L* also have the countable super property.

Proof of the countable approximation property of risks

- We prove the case of stochastic dominance order for convenience.
- Recall that S consists of equivalent classes of P-a.s. equal random variables on (Ω, F, P).
- Since a probability measure is finite, *S* has the countable super property, that is, every subset of *S* having a supremum contains an at most countable subset having the same supremum. (Not true if we do not consider equivalent class of *P*-a.s. random variables.)

Zaanen, A.C. (1997). *Introduction to Operator Theory on Riesz spaces*, Springer, Berlin, New York.

- Let L₁(Ω, F, P) denote the space of all P-a.s. equivalent classes of integrable random variable.
- If $X \in S, Y \in L_1(\Omega, \mathcal{F}, P)$ and $|X| \leq_{sl} |Y|$, then X is integrable too.
- This means $L_1(\Omega, \mathcal{F}, P)$ is an ideal of S.
- Therefore, $L_1(\Omega, \mathcal{F}, P)$ has the countable super property.

Proof of the countable approximation property of risks

Since R ⊂ L₁(Ω, F, P), a risk X can be approximated by a sequence of elements in L₁(Ω, F, P).

• But X is nonnegative; we may choose this sequence to be nonnegative, that is, X can approximated by a sequence of risks.

- The three stochastic orders are closely related to three risk measures.
- 1. Stochastic dominance \leftrightarrow Quantiles (also called VaR);
- 2. Stop loss order \leftrightarrow Tail VaR (TVaR);
- 3. Convex order \leftrightarrow Conditional tail expectation (CTE).

Let X be random variable with cumulative distribution function (CDF) $F_X(x)$. For any $p \in (0, 1)$, the *p*-quantile (risk measure) of X, denoted by $Q_p(X)$ is defined as

$$Q_p(X) = \inf\{x \mid F_X(x) \ge p\},\tag{2}$$

where $\inf \phi$ is understood to be $+\infty$. We also define the risk measure $Q^+_p(X)$ as

$$Q_p^+(X) = \sup\{x \mid F_X(x) \le p\},\tag{3}$$

where sup ϕ is understood to be $-\infty$.

Let X be random variable with CDF $F_X(x)$. For any $p \in (0, 1)$, define

$$g_X(p) = \inf\{x \mid F_X(x) > p\},\tag{4}$$

where $\inf \phi$ is understood to be $+\infty$. Likewise, define

$$h_X(p) = \sup\{x \mid F_X(x) < p\},\tag{5}$$

where sup ϕ is understood to be $-\infty$.

Theorem

Let X and Y be two random variables. Then $X \leq_{st} Y$ if and only if their corresponding quantiles are ordered in the same manner, that is,

$$X \leq_{st} Y \iff Q_p(X) \leq Q_p(Y) \quad \forall p \in (0,1).$$

Theorem

Let X be a random variable with CDF $F_X(x)$ and $Q_p(X), Q_p^+(X), g_X(p), h_X(p)$ are quantities defined in Equations (6)-(5). Then the following statements hold.

(1)
$$Q_p(X) = \lim_{q \uparrow p} g_X(q) = h_X(p);$$

(2)
$$Q_p^+(X) = \lim_{q \downarrow p} h_X(q) = g_X(p);$$

- (3) $g_X(p)$ is is nonnegative, non-decreasing and right-continuous;
- (4) $h_X(p)$ is is nonnegative, non-decreasing and left-continuous;
- (5) Q_p(X), as a function of p, is nonnegative, non-decreasing, left-continuous with right-hand limit, i.e., càglàd;
- (6) Q⁺_p(X), as a function of p, is nonnegative, non-decreasing, right-continuous with left-hand limit, i.e., càdlàg;

(10) If X is continuous random variable, then $F_X(g_X(p)) = F_X(g_X(p)-) = p$ for ever $p \in (0, 1)$. We assume a policyholder had losses in the past *i*-th experience period $1 \le i \le n$ and $X_1, ..., X_n$ are independent identically distributed. We are interested in whether the sample mean \overline{X}_n is stable with respect to a predetermined statistic (e.g. the sample mean $E[X_1]$). Precisely, for a given number *r* and a probability *p*, we will assign full credibility if

$$P\left[|\overline{X}_n-\xi|\leq r\xi\right]\geq p.$$

Let $\sigma^2 = Var(X_1)$. In terms of the number of exposure units *n*, the full credibility standard can be expressed as

$$n \ge \left(\frac{y_p}{r}\right)^2 \left(\frac{\sigma}{\xi}\right)^2$$

where

$$y_{p} = \inf \left\{ y \left| \Pr \left(\left| \frac{\overline{X}_{n} - \xi}{\sigma / \sqrt{n}} \right| \le y \right) \ge p \right\}.$$
(6)

In this case, we can the theorem to conclude that the full credibility standard is guaranteed to be a real number, that is, the infimum in Equation (6) is finite; moreover, the full credibility standard is a non-decreasing and right-continuous function of p.

The theorem also gives a rigorous justification that y_p satisfies

$$Pr\left(\left|\frac{\overline{X}_n-\xi}{\sigma/\sqrt{n}}\right|\leq y_p\right)=p.$$

if X_1 has a continuous distribution.

The Tail Value-at-Risk (TVaR) of a random variable X at level $p \in (0, 1)$, often denoted as $TVaR_p[X]$ is defined as

$$TV$$
a $R_p[X] = rac{1}{1-
ho}\int_{
ho}^1 Q_q(X)dq.$

Theorem

Let X and Y be two random variables. Then

 $X \leq_{sl} Y \iff TVaR_p[X] \leq TVaR_p[Y], \quad \forall p \in (0,1).$

The conditional tail expectation (CTE) of a random variable X at level $p \in (0, 1)$, often denoted as $CTE_p[X]$ is defined as

$$CTE_{\rho}[X] = E[X \mid X > Q_{\rho}(X)].$$

Theorem

Let X and Y be two random variables. Then

$$CTE_p[X] \leq CTE_p[Y] \Longrightarrow X \leq_{sl} Y, \quad \forall p \in (0,1).$$

The converse is not true.

 How a probability transformation, such as the Wang transformation, on (R, ≤) is going to affect a given risk?

 Properties of positive operators, such as expectation operators or conditional expectation operators, on (R, ≤).

Thank you!!!

Questions?