NONPARAMETRIC ESTIMATION WITH INCOMPLETE DATA:
EFFICIENT NONPARAMETRIC HAZARD RATE ESTIMATION
WITH LEFT TRUNCATED AND RIGHT CENSORED DATA

by Sam Efromovich

Endowed Professor

Head of Actuarial Program, Department of Mathematical Sciences, UTDallas

This work was partially supported by NSF Grant DMS—-0906790 and

NSA Grant H982301310212.

Talk134r in papl134



EXAMPLES OF INCOMPLETE DATA

We are interested in a random variable X* which cannot be ob-

served directly.

Typical cases are TRUNCATION and CENSORING.

Examples from Klugman, Panjer and Willmot “LOSS MODELS”:
Left Truncation: An ordinary deductible of d is applied (a loss
below d may not be known).

Right Censoring: A policy limit v is applied. If loss exceeds u its

value is not recorded.

Left Truncation and Right Censoring: In constructing a mortality
table, it is common to follow a group of people of various ages over
only a few years. When a person joins a study, he or she is alive
at that time. This person’s age at death must be at least as great
as the age at entry to the study and thus has been left truncated. If
the person is alive at the end of the study or leaves the study prior
to its end, then right censoring occurs because the person’s age at

death is unknown.



Two more examples:

WHEL STUDY: Contains data on the time from a breast cancer
surgery to the cancer relapse. The information is available only for
women who at the time of baseline had no relapsed cancer, and this
creates left truncation. At the same time, some participants either
dropped the study, or died during the study, or had no relapse

during the study, and then these events created right censoring.

CHANNING HOUSE is a retirement center located in Palo Alto,
California, and its distinctive feature is that all residents of the
community are covered by a health care program with a zero de-
ductible. The resident’s age at entry to the community as well as
the age at leaving the community or death were recorded. Note
that when a person joined the community, he or she was alive at
that time, and the person’s age at death was at least as great as
the age at entry to the community and thus was left truncated. If
the resident was alive when the study ended or the resident left the

community before the study ended, right censoring had occurred.



IMPORTANT REMARKS:

(i) The fundamental difference between censoring and
truncation is that the former informs us about missing
of an underlying observation of interest while the latter

does not.

(ii) In what follows, I will not use classical ideas and
methods of product-limit estimation proposed and ex-
plored by Kaplan and Meier, Peterson, Nelson and Aalen,
and many other great statisticians. Instead, the classical

method of moment estimation, namely that

the sample mean is a good estimate

of the population mean

1s used.



Consequences of ignoring left truncation and

right censoring via a simple example

Suppose that two independent random variables U* and V* have
Gamma distribution with (shape,scale) parameters (2,2) and (5,1),
respectively, and then the left truncation occurs at a fixed point
a = 5 and this generates truncated random variables U and V,
respectively. Then E{U* —V*} = —1 while E{U —V} = .5. Let us also
note that there is no chance to estimate distributions of U* and
V* for values smaller than the point of truncation a. Furthermore,
if then right censoring at a fixed point 10 is applied to U and V,
and we denote corresponding censored random variables as U’ and
V', then E{U’" — V'} = 0.11. As we see, ignoring truncation and/or

censoring creates a bias.



Modeling Left Truncated and Right Censored Data

Data consist of n observations. Observations are collected via a
hidden sequential sampling from a triplet of mutually independent
and nonnegative random variables (7%, X*, Z7*) where:

T* is the truncating random variable,

X* is the random variable of interest,

Z* is the censoring random variable.

Suppose that (77, X}, Z;) is the kth realization of (7%, X*, Z*) and
the available sample of truncated and censored statistics is of size
[—1,1—1<min(k—1,n—1). If T} > min(X}, Z;) then left truncation
of the kth realization occurs meaning that:

(i) kth triplet is not observed;

(ii) the fact that the kth observation has occurred is unknown;
(iii) next realization of the triplet should be waited for.

On the other hand, if 7} < min(X}, Z}) then an observation

(11, Y, Ry) = (T, min(X}, Z7), [(X; < Z;)) is available. Sequential

sampling from the triplet (77, X*, Z*) stops as soon as [ = n.



Note that the hidden mechanism of collecting data can be de-
scribed via a negative binomial experiment such that:
(i) The experiment stops as soon as nth “success” occurs;
(ii) Data are collected only when a “success” occurs;
(iii) There is no information on how many “failures” occurred be-
tween ‘“successes”;
(iii) The probability of “success” is

p:=P(T* < min(X*, Z%)) = /OOO G ()G (t)dt. (0.1)

While we do not know the total number of hidden “failures”,
the negative binomial distribution sheds some light on the hidden
number N of “failures”, and in particular the mean and variance

of N are

E(N)=n(l—p)p~!, Var(N)=n(l—p)p~



HAZARD RATE
By definition, the hazard rate function of nonnegative

random variable X* is

v,y . Pe<X <z+olX*>z) () GX*(x)/dx
W (@) = lim . S Gl

where f¥ () is the probability density of X*,
G (x / A w)du=1—-FX(z), G*(2)>0, 2>0,

is the survivor function, and FX'(z) is the cumulative distribution
function of X*. If one thinks about X* as a time to an event-of-
interest, then h* (r)dr represents the instantaneous likelihood that
the event occurs within the interval (z,z + dx) given that the event
has not occurred at time . The hazard rate quantifies the trajec-
tory of imminent risk, and it may be referred to by other names
in different sciences, for instance as the failure rate in reliability

theory and the force of mortality in sociology.



CLASSICAL PROPERTIES OF THE HAZARD RATE

(i) The hazard rate, similarly to the probability density or the
survivor function, characterizes the random variable X*. Namely, if
the hazard rate is known then the corresponding probability density
is

X (@) = W ()e o,

and the survivor function is

G (1) = ¢ i e

The preceding identity follows from integrating both sides of

_dGX*(a:)/dx

X () —
WY (@) = s

and then using G* (0) = 1.

(ii) The hazard rate is nonnegative and has the same smoothness

as the corresponding density.



(iili) The hazard rate is not integrable on its support because a
hazard rate must satisfy fooo h(z)dr = oo. Hence it is natural to
study it over a finite interval, for instance [a,a + 1], a > 0.

(iv) The hazard rate of the minimum of two independent random
variables is the sum of the hazard rates of the two random variables.
EXAMPLES:

(i) A familiar example is the constant hazard rate of an expo-
nential random variable (the rate is equal to the reciprocal of the
mean), and inverse is also valid - a constant hazard rate implies
exponential distribution. A constant hazard rate has coined the
name memoryless for exponential distribution.

(ii) Another interesting example is the Weibull distribution
1 Gk ) = (/) @/ N e (> 0),

where k& > 0 is the shape parameter and \ > 0 is the scale parameter.
If £ < 1 then the hazard rate is decreasing (“infant mortality”);

If £ > 1 then the hazard rate is increasing (“aging” process).
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ASYMPTOTIC THEORY

The studied risk is the Mean Integrated Squared Error (MISE)
over a unit interval [a,a + 1]. In the case of observing data with-
out truncation and censoring, for a-fold differentiable functions the

—2a/(2a+1)

familiar minimax rate n of the MISE convergence is well

known (Ibragimov and Khasminskii 1981 and Efromovich 1999).

Under a mild assumption, the minimax rate is preserved for

observations with left truncation and right censoring.

Hence our aim is to find a corresponding sharp minimax constant

of the MISE convergence.

To present solution of the problem, it is convenient to begin with

explanation of the used minimax approach via the game theory.

11



MINIMAX GAME

There are three players: the dealer, the statistician and nature.

e The dealer chooses all parameters of an underlying function class
as well as nuisance functions defining left truncation and right cen-
soring mechanisms, and then presents them to nature.

e Nature chooses most difficult, for estimation, hazard rate from
the dealer’s class and generates a corresponding sample of obser-
vations from the hazard rate.

e The statistician and the dealer try to find best estimate of the
hazard rate.

e If an observer is present, who may know everything about the
game, including the underlying hazard rate, then the observer is
traditionally called oracle and the oracle also can suggest an

estimate.
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NOTATION

In what follows ¢y(z) = 1 and ¢;(z) = 22 cos(nj(z — a)), 7 > 0 are
elements of the classical cosine basis on the interval [a,a + 1]), « is
a positive integer number, 0; = faaH ¢i(x)h(r)dx are Fourier coeffi-
cients of hX" (z) on [a,a + 1]. E,x-{-} denotes the expectation given
a hazard rate function h* (remember that the hazard rate charac-

terizes a random variable), and o4(1) are generic sequences that are

vanishing as s — oo.
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LOCAL SOBOLEYV CLASS OF o-DIFFERENTIABLE FUNCTIONS

S, @1, 8) = {h: h(x) +293% I(z € [a,a+ 1]);
- 2a2 .
(75)70; <Q < o0, a €{1,2,...}, sup ]ZQJ% )| < In"Hn+ 3);
x€la,a+1]

J=1 =

a+1
/ h (v)dv < oo, inf Ay (x) >0,
0

z€la,a+1]

i a+1
S+ P [ @l < o, 5> 0)

=0

The underlying idea of this class is that all considered functions
are not farther than In"*(n+3) in L. ([a,a+ 1])-norm from the pivot.
This is why the class is called local. The last line indicates that the
pivot should be smoother than a “regular” function from the class.

Golubev (1991) shows that a pivot does not affect the sharp
constant in the probability density, regression and spectral density
estimation problems.

Next theorem shows that the pivot does affect the constant in
the hazard rate case.
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THEOREM 1 (Lower Bound for Dealer-Estimators). Let us assume
that GZ (2)FT (2)G* (z) > 0 for z € [a,a + 1]. Then the following
lower bound for the local minimax MISE holds,

inf sup )Ehx*{ /aaﬂ(fvz*(x) —hX (ZC))QdZC}

h* X eS(a,Q,hi™ .

> Pla, Q)| / R ()9 (w)duln (1 0, (1)),

where the infimum is taken over all possible dealer-estimators h*
based on a left truncated and right censored sample
(Y1, Ty, Ry), ...,(Yn, Ty, R,), distributions F7', F? and parameters

a,Q,hi", B) of the underlying Sobolev class,
0

9

2a/(204+1)
Pla,Q) == Ql/(2a+1)(2a + 1)1/(2a+1)[ « }

m(a+1)
g) =P(T <o <Y)=P(T* <v <Y*T* <Y*) = [p 'G% (v)FT (v)]G* (v),

and p = P(T* < min(X*, Z%)).
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ADAPTIVE DATA-DRIVEN ESTIMATOR

The estimator is defined as

K, 7
M) =Y [1-— dn”” S[H(E Y 02> @1/ mm)n) D brpsa
k=1 Lk ZJGBk 9,7 jEB jEBy

d .= nanlel(Xl € [a,a+1]).
I=1

THEOREM 2. Let G? (z)FT (2)GX (x) > 0 for z € [a,a + 1]. Then

the adaptive estimator ]Al(l’) is sharp-minimax, that is

sup B [ () — B (2))da)

hX* ES(O&,Q,}LS(* 7B)

P@U [ 1 (g el (14 0,(1)
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NUMERICAL STUDY
The proposed estimator is compared with an oracle-estimator mo-

tivated by a kernel estimator of Uzunogullari and Wang (1992),

: R - Y R

Wz b () =n 'S K (L I(Y; € [a—tb*(a), a+1+tb"(a+1)]),
(@) =t (5 ) e i €l (@) (a+1)))

where K(z) is the Gaussian kernel and 0*(z) is the golden-rule ora-

cle’s bandwidth

b*(l') _ n—1/5 [h(.flf) f KQ(t)dt]1/5
[P () [ 2K (t)dt]*>(g(x)"/>

The oracle uses an underlying hazard rate to calculate the band-
width and information about p~!, F7"', G*" and G to calculate the
underlying function g(z). Furthermore, the oracle uses observations
Y, from an increased interval [a — tb*(a),a + 1 +tb*(a + 1)] to take into
account boundary issues. To deal with boundary issues, the cosine
series estimator is enriched by two polynomial functions z and z?

via using Gram-Schmidt orthonormalization.
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EXPERIMENT

The underlying distributions of X* are either Weibull W (~, §), where
~v and [ are shape and scale parameters, respectively, or it is a Bath-
tub (BT) distribution generated by X* := min(V}, V) with V; and V4
being W (0.3,1) and W (15, 1), respectively. The underlying distribu-
tions of 7" and Z* are either exponential or uniform. Several differ-
ent intervals [a, b] and n € {100, 200, 300,400, 500, 1000} are considered.
Then for each experiment, that is the underlying distributions, in-
terval [a,b] and sample size, 5000 simulations are conducted. For
each simulation the empirical integrated squared error of the oracle
(ISEO) and the empirical integrated squared error of the proposed
data-driven series estimator (ISEE) are calculated. Then the me-
dian ratio (over 5000 simulations) of ISEO/ISEE is shown in Table
1 as well as the average number of observations fallen within a
studied interval [a,b]. Note that each entry in Table 1 is written
as A/B where A is the median ratio of ISEO/ISEE and B is the

average number of observations fallen within [a,a + 1].
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Table 1. Results of Monte Carlo simulations. Distributions are denoted
as W(~,5), BT, U(ci,c2) and E(\) for Weibull with shape pa-
rameter 7 and scale parameter 3, Bathtub corresponding to
the minimum of random variables with distributions W (0.3,1)
and W(15,1), uniform on the interval [c, ], and exponential
with 1/)\ being the mean, respectively. For each experiment,
which is defined by the three distributions, sample size n, and
the interval of estimation [a, b, 5000 samples are generated and
then for each sample the oracle estimate and the proposed
data-driven series estimate are calculated and then the corre-
sponding empirical integrated squared errors over the interval
of interest [a,b] are calculated and denoted as ISEO and ISEE,
respectively. A corresponding entry in the Table is written as
A/B where A is the median of 5000 ratios ISEO/ISEE and B
is the average number of observations fallen within the con-

sidered interval [a,b]. The fifth column shows coefficients of
difficulty d*.

n

X+ T~ Z* [a, 0] ar 100 200 300 400 500 1000

W(3,4) | U(0,3) | U(3,10) | [0.5,4] 1.84 [ 0.80/59 | 0.92/118 | 1.07/177 | 1.20/237 | 1.15/295 | 1.41/590
W(3,4) | U(0,3) | U(3,10) | [1,4] 1.79 | 0.71/58 | 0.87/116 | 0.88/174 | 1.10/232 | 1.01/290 | 1.32/580
W3,4) | U(0,3) | U(3,10) | [1,5] 6.88 | 0.71/80 | 0.89/161 | 1.02/241 | 1.03/320 | 1.26/400 | 1.41/800
W(12,5) | E(1) | E(0.05) | [L,5] 1.59 | 0.92/48 | 1.03/95 | 1.27/143 | 1.33/200 | 1.45/251 | 1.43/480
W(05,2) | E(2) | E(0.05) | [0.5,8 470 | 0.72/46 | 0.80/91 | 0.86/138 | 0.97/182 | 1.07/230 | 1.44/462
W(0.5,2) | E(G) | E(0.05) | [0.1,3 1.89 | 0.69/47 | 0.83/95 | 0.90/142 | 0.94/190 | 1.01/237 | 1.24/474
W(03,1) | E(2) | E(0.05) | [0.2,6] 2.45 | 0.73/32 | 0.92/64 | 1.00/96 | 1.08/128 | 1.19/160 | 1.58/320
W(3,2) | BE(1) | E(0.15) | [1,2] 1.90 | 0.91/38 | 0.99/74 | 1.13/111 | 1.11/151 | 1.24/188 | 1.56/371
W(3,2) | E(1) | E(0.15) | [0.5,2] 2.08 | 0.84/45 | 0.91/91 | 1.09/137 | 1.04/182 | 1.15/229 | 1.42/456
W(3,2) | E(L5) | E(0.I) | [0.5,2.5] | 6.70 | 0.76/72 | 0.94/144 | 1.03/215 | 1.12/287 | 1.10/360 | 1.47/720
BT E(80) | E(0.5) | [0.05,0.9] | 1.74 | 0.78/45 | 0.90/90 | 1.08/135 | 1.16/180 | 1.38/225 | 1.40/450
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CONCLUSION FROM TABLE 1

Only for the smallest sample sizes n < 200 the oracle dominates
the estimator. The main reason of this domination is that sizes of
subsamples, used by the estimator and shown in denominators of
corresponding cells, are small for nonparametric estimation.
Furthermore, remember that the oracle uses the unknown function
g(z) and the underlying hazard rate function h* (z) to calculate the
golden-rule bandwidth, and the latter is helpful for the smallest
samples. Coefficients of difficulty d* shed light on relative

complexity of a particular experiment.
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ANALYSIS OF REAL DATA

CHANNING HOUSE: It is a retirement center located in Palo
Alto, California, and its distinctive feature is that all residents of
the community are covered by a health care program with a zero
deductible, that is, no additional financial burden to the residents.
The data were collected between the opening of the house in Jan-
uary 1964 and July 1975. In that period of time 97 men and 365
women passed through the center, and among them 130 women and
46 men died at Channing House. The resident’s age at entry to the
community as well as the age at leaving the community or death
were recorded. Note that when a person joined the community, he
or she was alive at that time, and the person’s age at death was at
least as great as the age at entry to the community and thus was
left truncated. If the resident was alive when the study ended or
the resident left the community before the study ended, right cen-
soring had occurred. Differences between the survival hazard rates

for male and female residents was the primary aim of the study.
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WHEL STUDY: The project, supported by NIH, was designed to
address the question of whether high intake of vegetables and fruits
could reduce breast cancer recurrence. The project included 3088
women previously treated for breast cancer and who were cancer-
free at the baseline. Participants were randomly assigned to either
an intensive diet intervention or to a comparison group, this was
done from year 1995 to year 2000, and then participants were fol-
lowed upon through 2006. Plasma carotenoids concentrations, in-
cluding alpha-carotene, beta-carotene, lutein, lycopene and cryp-
toxanthin, were measured at baseline using blood samples (only
3044 participants provided blood samples and therefore are con-
sidered in the example). One of the main aims of the study was
to examine the relationship between a plasma carotenoids concen-
tration ( as an indicator of dietary intake) and recurrence-free sur-
vival. The variable of interest, X*, is the recurrence-free survival
time which is defined as the time from the date of initial breast
cancer diagnosis (for all our purposes that date can be considered

as the date of surgery) to the date of diagnosis of the cancer relapse.
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In our analysis of the data, for each type of plasma carotenoid,
we divided 3044 patients, who provided blood samples at base-
line, into two groups using the median concentration as the thresh-
old. For example, if alpha-carotene is the variable of interest, then
participants whose plasma alpha-carotene was above the median
value were classified as group 1 and participants with plasma alpha-
carotine below the median were classified as group 2. Then for each
group the proposed adaptive hazard rate estimator was used to esti-
mate the hazard rate for the time from surgery to relapse. Similarly

paired estimates were calculated for other types of carotenoids.
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T-TEST

In all our practical examples we compared hazard rates for two pop-
ulations, and in all cases nonparametric estimates have indicated
that average hazard rates are different. Hence, it is reasonable
to evaluate an integrated hazard rate over the interval of interest
= fab h*"(z)dx for each population and then compare them. Let s,
and py denote integrated over [a, b] hazard rates for first and second
populations considered in the above-discussed examples. Then it
is natural to test the null hypothesis 11y = o versus the alternative
hypothesis 11 > ps. To shed a different light on the hypotheses,
remember that a survival function G¥ () = ¢ lo Wi and then

for any two populations with hazard rates »*1 and h*? we have

(GG - [0 - 5010

In particular, if a« = 0 then we get G*1(b)/G*2(b) = et27H1,

Because p = E,x-{Rg ' (Y)I(Y € [a,a+ b])} , the natural estimate of
pis =" Rm 'I(Y; € [a,a+b]). In its turn, this estimate allows
us to use a standard t-test for comparison between means of two

populations.
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Table 2. Results for hypothesis testing.

Example f1 | o | Var(iy) | Var(is) | p-value
Channing House | 1.08 | 0.85 | 0.0263 | 0.0065 | 0.1003
Alpha-carotene | 0.16 | 0.20 | 0.00013 | 0.00017 | 0.0047
Beta-carotene 0.16 | 0.21 | 0.00013 | 0.00017 | 0.0017
Cryptoxanthin | 0.17 | 0.19 | 0.00014 | 0.00016 | 0.1195
Lycopene 0.16 | 0.20 | 0.00014 | 0.00017 | 0.0115
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CONFIDENCE BANDS

For Channing House example and WHEL data are shown in Figure
5. Here, following Wasserman (2005), we show confidence bands
for E{h(z)}. The top diagram in Figure 5 exhibites 80 percent con-
fidence bands for male and female hazard rates. As we see, there
is a relatively small interval (about 20 months) around 930 months
where the two confidence bands do not intersect. Furthermore,
there is a larger interval in time (about 200 months) where each
estimate is not covered by confidence band for another edstimate.
The left-bottom diagram shows 90 percent confidence bands for two
groups of participants in the WHEL study with different levels of
alpha-carotene. As we see, there is a relatively large period in time
when the two confidence bands do not intersect. To see something
similar for beta-carotine, it is required to use 80 percent confidence
bands (see the right-bottom diagram). Note that it is typical for
nonparametric confidence bands to be much wider near boundaries
(see Wasserman 2005). For the Channing House example this phe-
nomenon is more pronounce for the right boundary, and for the

WHEL study both boundaries are affected.
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Figure 1: Estimation of a hazard rate function (solid line) by oracle kernel estimator (dot-
dash line) and proposed estimator (longdash line). The top left, right top and two bottom
diagrams correspond to the third, sixth and eleventh experiments described in Table 1. Sub-
titles show the total sample size n and the number m of Ys observed within an interval of
estimation.
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Figure 2: Analysis of the Channing House data. The left diagram shows estimated hazard
rates for male (the dotted line) and female (the solid line) residents. The right diagram
shows the relative hazard rate which is the ratio of the male’s estimated hazard rate to the
female’s estimated hazard rate.
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Estimates take into account truncation
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Figure 3: Estimated hazard rates for two groups of women in WHEL study. The two top
diagrams show the proposed estimates, the two bottom diagrams show estimates that ignore
left truncation. Women with larger than the median alpha-carotene level (the left column
of diagrams) or larger than the median beta-carotene level (the right column of diagrams)
belong to the second group, and correspondingly others to the first group.
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Estimates take into account truncation
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Figure 4: Estimated hazard rates for two groups of women in WHEL study. Structure of
Figure 3 is identical to Figure 2 only here the effects of larger concentrations of cryptoxanthin
and lycopene are studied.
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Figure 5: Confidence bands. The top diagram shows 80 perecent confidence bands for the
Channing House data. Two bottom diagrams devoted to WHEL study and show 90 and 80
percent confidence bands for alpha-carotine and beta-carotine, respectively.

31



