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EXAMPLES OF INCOMPLETE DATA

We are interested in a random variable X∗ which cannot be ob-

served directly.

Typical cases are TRUNCATION and CENSORING.

Examples from Klugman, Panjer and Willmot “LOSS MODELS”:

Left Truncation: An ordinary deductible of d is applied (a loss

below d may not be known).

Right Censoring: A policy limit u is applied. If loss exceeds u its

value is not recorded.

Left Truncation and Right Censoring: In constructing a mortality

table, it is common to follow a group of people of various ages over

only a few years. When a person joins a study, he or she is alive

at that time. This person’s age at death must be at least as great

as the age at entry to the study and thus has been left truncated. If

the person is alive at the end of the study or leaves the study prior

to its end, then right censoring occurs because the person’s age at

death is unknown.
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Two more examples:

WHEL STUDY: Contains data on the time from a breast cancer

surgery to the cancer relapse. The information is available only for

women who at the time of baseline had no relapsed cancer, and this

creates left truncation. At the same time, some participants either

dropped the study, or died during the study, or had no relapse

during the study, and then these events created right censoring.

CHANNING HOUSE is a retirement center located in Palo Alto,

California, and its distinctive feature is that all residents of the

community are covered by a health care program with a zero de-

ductible. The resident’s age at entry to the community as well as

the age at leaving the community or death were recorded. Note

that when a person joined the community, he or she was alive at

that time, and the person’s age at death was at least as great as

the age at entry to the community and thus was left truncated. If

the resident was alive when the study ended or the resident left the

community before the study ended, right censoring had occurred.
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IMPORTANT REMARKS:

(i) The fundamental difference between censoring and

truncation is that the former informs us about missing

of an underlying observation of interest while the latter

does not.

(ii) In what follows, I will not use classical ideas and

methods of product-limit estimation proposed and ex-

plored by Kaplan and Meier, Peterson, Nelson and Aalen,

and many other great statisticians. Instead, the classical

method of moment estimation, namely that

the sample mean is a good estimate

of the population mean

is used.

4



Consequences of ignoring left truncation and

right censoring via a simple example

Suppose that two independent random variables U ∗ and V ∗ have

Gamma distribution with (shape,scale) parameters (2, 2) and (5, 1),

respectively, and then the left truncation occurs at a fixed point

a = 5 and this generates truncated random variables U and V ,

respectively. Then E{U ∗−V ∗} = −1 while E{U −V } = .5. Let us also

note that there is no chance to estimate distributions of U ∗ and

V ∗ for values smaller than the point of truncation a. Furthermore,

if then right censoring at a fixed point 10 is applied to U and V ,

and we denote corresponding censored random variables as U ′ and

V ′, then E{U ′ − V ′} = 0.11. As we see, ignoring truncation and/or

censoring creates a bias.
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Modeling Left Truncated and Right Censored Data

Data consist of n observations. Observations are collected via a

hidden sequential sampling from a triplet of mutually independent

and nonnegative random variables (T ∗, X∗, Z∗) where:

T ∗ is the truncating random variable,

X∗ is the random variable of interest,

Z∗ is the censoring random variable.

Suppose that (T ∗k , X
∗
k , Z

∗
k) is the kth realization of (T ∗, X∗, Z∗) and

the available sample of truncated and censored statistics is of size

l− 1, l− 1 ≤ min(k− 1, n− 1). If T ∗k > min(X∗k , Z
∗
k) then left truncation

of the kth realization occurs meaning that:

(i) kth triplet is not observed;

(ii) the fact that the kth observation has occurred is unknown;

(iii) next realization of the triplet should be waited for.

On the other hand, if T ∗k ≤ min(X∗k , Z
∗
k) then an observation

(Tl, Yl, Rl) := (T ∗k ,min(X∗k , Z
∗
k), I(X∗k ≤ Z∗k)) is available. Sequential

sampling from the triplet (T ∗, X∗, Z∗) stops as soon as l = n.
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Note that the hidden mechanism of collecting data can be de-

scribed via a negative binomial experiment such that:

(i) The experiment stops as soon as nth “success” occurs;

(ii) Data are collected only when a “success” occurs;

(iii) There is no information on how many “failures” occurred be-

tween “successes”;

(iii) The probability of “success” is

p := P(T ∗ ≤ min(X∗, Z∗)) =

∫ ∞
0

fT
∗
(t)GX∗

(t)GZ∗
(t)dt. (0.1)

While we do not know the total number of hidden “failures”,

the negative binomial distribution sheds some light on the hidden

number N of “failures”, and in particular the mean and variance

of N are

E(N) = n(1− p)p−1, Var(N) = n(1− p)p−2.
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HAZARD RATE

By definition, the hazard rate function of nonnegative

random variable X∗ is

hX
∗
(x) := lim

v→0

P(x ≤ X∗ ≤ x+ v|X∗ ≥ x)

v
=
fX

∗
(x)

GX∗(x)
= −dG

X∗
(x)/dx

G(x)
,

where fX
∗
(x) is the probability density of X∗,

GX∗
(x) :=

∫ ∞
x

fX
∗
(u)du = 1− FX∗

(x), GX∗
(x) > 0, x ≥ 0,

is the survivor function, and FX∗
(x) is the cumulative distribution

function of X∗. If one thinks about X∗ as a time to an event-of-

interest, then hX
∗
(x)dx represents the instantaneous likelihood that

the event occurs within the interval (x, x+ dx) given that the event

has not occurred at time x. The hazard rate quantifies the trajec-

tory of imminent risk, and it may be referred to by other names

in different sciences, for instance as the failure rate in reliability

theory and the force of mortality in sociology.
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CLASSICAL PROPERTIES OF THE HAZARD RATE

(i) The hazard rate, similarly to the probability density or the

survivor function, characterizes the random variable X∗. Namely, if

the hazard rate is known then the corresponding probability density

is

fX
∗
(x) = hX

∗
(x)e−

∫ x

0
hX

∗
(v)dv,

and the survivor function is

GX∗
(x) = e−

∫ x

0
hX

∗
(v)dv.

The preceding identity follows from integrating both sides of

hX
∗
(x) = −dG

X∗
(x)/dx

GX∗(x)

and then using GX∗
(0) = 1.

(ii) The hazard rate is nonnegative and has the same smoothness

as the corresponding density.
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(iii) The hazard rate is not integrable on its support because a

hazard rate must satisfy
∫∞

0 h(x)dx = ∞. Hence it is natural to

study it over a finite interval, for instance [a, a+ 1], a ≥ 0.

(iv) The hazard rate of the minimum of two independent random

variables is the sum of the hazard rates of the two random variables.

EXAMPLES:

(i) A familiar example is the constant hazard rate of an expo-

nential random variable (the rate is equal to the reciprocal of the

mean), and inverse is also valid - a constant hazard rate implies

exponential distribution. A constant hazard rate has coined the

name memoryless for exponential distribution.

(ii) Another interesting example is the Weibull distribution

fX
∗
(x, k, λ) = (k/λ)(x/λ)k−1e−(x/λ)kI(x > 0),

where k > 0 is the shape parameter and λ > 0 is the scale parameter.

If k < 1 then the hazard rate is decreasing (“infant mortality”);

If k > 1 then the hazard rate is increasing (“aging” process).
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ASYMPTOTIC THEORY

The studied risk is the Mean Integrated Squared Error (MISE)

over a unit interval [a, a + 1]. In the case of observing data with-

out truncation and censoring, for α-fold differentiable functions the

familiar minimax rate n−2α/(2α+1) of the MISE convergence is well

known (Ibragimov and Khasminskii 1981 and Efromovich 1999).

Under a mild assumption, the minimax rate is preserved for

observations with left truncation and right censoring.

Hence our aim is to find a corresponding sharp minimax constant

of the MISE convergence.

To present solution of the problem, it is convenient to begin with

explanation of the used minimax approach via the game theory.
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MINIMAX GAME

There are three players: the dealer, the statistician and nature.

• The dealer chooses all parameters of an underlying function class

as well as nuisance functions defining left truncation and right cen-

soring mechanisms, and then presents them to nature.

• Nature chooses most difficult, for estimation, hazard rate from

the dealer’s class and generates a corresponding sample of obser-

vations from the hazard rate.

• The statistician and the dealer try to find best estimate of the

hazard rate.

• If an observer is present, who may know everything about the

game, including the underlying hazard rate, then the observer is

traditionally called oracle and the oracle also can suggest an

estimate.
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NOTATION

In what follows ϕ0(x) = 1 and ϕj(x) = 21/2 cos(πj(x − a)), j > 0 are

elements of the classical cosine basis on the interval [a, a + 1]), α is

a positive integer number, θj =
∫ a+1

a ϕj(x)h(x)dx are Fourier coeffi-

cients of hX
∗
(x) on [a, a + 1]. EhX∗{·} denotes the expectation given

a hazard rate function hX
∗

(remember that the hazard rate charac-

terizes a random variable), and os(1) are generic sequences that are

vanishing as s→∞.
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LOCAL SOBOLEV CLASS OF α-DIFFERENTIABLE FUNCTIONS

S(α,Q, hX
∗

0 , β) :=
{
h : h(x) = hX

∗

0 (x) +
∞∑
j=1

θjϕj(x)I(x ∈ [a, a+ 1]);

∞∑
j=1

(πj)2αθ2
j ≤ Q <∞, α ∈ {1, 2, . . .}, sup

x∈[a,a+1]

|
∞∑
j=1

θjϕj(x)| < ln−1(n+ 3);

∫ a+1

0

hX
∗

0 (v)dv <∞, inf
x∈[a,a+1]

hX
∗

0 (x) ≥ 0,

∞∑
j=0

(1 + j2α+β)[

∫ a+1

a

hX
∗

0 (x)ϕj(x)dx]2 <∞, β > 0
}
.

The underlying idea of this class is that all considered functions

are not farther than ln−1(n+ 3) in L∞([a, a+ 1])-norm from the pivot.

This is why the class is called local. The last line indicates that the

pivot should be smoother than a “regular” function from the class.

Golubev (1991) shows that a pivot does not affect the sharp

constant in the probability density, regression and spectral density

estimation problems.

Next theorem shows that the pivot does affect the constant in

the hazard rate case.
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THEOREM 1 (Lower Bound for Dealer-Estimators). Let us assume

that GZ∗
(x)F T ∗

(x)GX∗
(x) > 0 for x ∈ [a, a + 1]. Then the following

lower bound for the local minimax MISE holds,

inf
ȟ∗

sup
hX∗∈S(α,Q,hX∗

0 ,β)

EhX∗

{∫ a+1

a

(ȟ∗(x)− hX∗
(x))2dx

}

≥ P (α,Q)([

∫ a+1

a

hX
∗

0 (v)g−1(v)dv]n−1)2α/(2α+1)(1 + on(1)),

where the infimum is taken over all possible dealer-estimators ȟ∗

based on a left truncated and right censored sample

(Y1, T1, R1), . . . , (Yn, Tn, Rn), distributions F T ∗
, FZ∗

and parameters

(α,Q, hX
∗

0 , β) of the underlying Sobolev class,

P (α,Q) := Q1/(2α+1)(2α + 1)1/(2α+1)
[ α

π(α + 1)

]2α/(2α+1)

,

g(v) := P(T ≤ v ≤ Y ) = P(T ∗ ≤ v ≤ Y ∗|T ∗ ≤ Y ∗) = [p−1GZ∗
(v)F T ∗

(v)]GX∗
(v),

and p = P(T ∗ ≤ min(X∗, Z∗)).
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ADAPTIVE DATA-DRIVEN ESTIMATOR

The estimator is defined as

ĥ(x) :=

Kn∑
k=1

[
1− d̂n−1

L−1
k

∑
j∈Bk

θ̂2
j

]
I
(
L−1
k

∑
j∈Bk

θ̂2
j > (d̂+1/ ln(n))n−1

)∑
j∈Bk

θ̂jϕj(x),

where

θ̂j :=
n∑
l=1

Rlϕj(Yl)η
−1
l I(Yl ∈ [a, a+ 1]),

ηl :=
n∑
s=1

I(Ts ≤ Yl ≤ Ys),

d̂ := n

n∑
l=1

η−2
l RlI(Xl ∈ [a, a+ 1]).

THEOREM 2. Let GZ∗
(x)F T ∗

(x)GX∗
(x) > 0 for x ∈ [a, a + 1]. Then

the adaptive estimator ĥ(x) is sharp-minimax, that is

sup
hX∗∈S(α,Q,hX

∗
0 ,β)

EhX∗{
∫ a+1

a

(ĥ(x)− hX∗
(x))2dx}

≤ P (α,Q)([

∫ a+1

a

hX
∗

0 (x)g−1(x)dx]n−1)2α/(2α+1)(1 + on(1)).
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NUMERICAL STUDY

The proposed estimator is compared with an oracle-estimator mo-

tivated by a kernel estimator of Uzunogullari and Wang (1992),

ȟ(x, b∗(x)) = n−1
n∑
l=1

K
(x− Yl
b∗(x)

) Rl

b∗(x)g(Yl)
I(Yl ∈ [a−tb∗(a), a+1+tb∗(a+1)]),

where K(x) is the Gaussian kernel and b∗(x) is the golden-rule ora-

cle’s bandwidth

b∗(x) = n−1/5 [h(x)
∫
K2(t)dt]1/5

[h′′(x)
∫
t2K(t)dt]2/5(g(x)1/5

.

The oracle uses an underlying hazard rate to calculate the band-

width and information about p−1, F T ∗
, GX∗

and GZ∗
to calculate the

underlying function g(x). Furthermore, the oracle uses observations

Yl from an increased interval [a− tb∗(a), a+ 1 + tb∗(a+ 1)] to take into

account boundary issues. To deal with boundary issues, the cosine

series estimator is enriched by two polynomial functions x and x2

via using Gram-Schmidt orthonormalization.
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EXPERIMENT

The underlying distributions of X∗ are either Weibull W (γ, β), where

γ and β are shape and scale parameters, respectively, or it is a Bath-

tub (BT ) distribution generated by X∗ := min(V1, V2) with V1 and V2

being W (0.3, 1) and W (15, 1), respectively. The underlying distribu-

tions of T ∗ and Z∗ are either exponential or uniform. Several differ-

ent intervals [a, b] and n ∈ {100, 200, 300, 400, 500, 1000} are considered.

Then for each experiment, that is the underlying distributions, in-

terval [a, b] and sample size, 5000 simulations are conducted. For

each simulation the empirical integrated squared error of the oracle

(ISEO) and the empirical integrated squared error of the proposed

data-driven series estimator (ISEE) are calculated. Then the me-

dian ratio (over 5000 simulations) of ISEO/ISEE is shown in Table

1 as well as the average number of observations fallen within a

studied interval [a, b]. Note that each entry in Table 1 is written

as A/B where A is the median ratio of ISEO/ISEE and B is the

average number of observations fallen within [a, a+ 1].
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Table 1. Results of Monte Carlo simulations. Distributions are denoted
as W (γ, β), BT , U(c1, c2) and E(λ) for Weibull with shape pa-
rameter γ and scale parameter β, Bathtub corresponding to
the minimum of random variables with distributions W (0.3, 1)
and W (15, 1), uniform on the interval [c1, c2], and exponential
with 1/λ being the mean, respectively. For each experiment,
which is defined by the three distributions, sample size n, and
the interval of estimation [a, b], 5000 samples are generated and
then for each sample the oracle estimate and the proposed
data-driven series estimate are calculated and then the corre-
sponding empirical integrated squared errors over the interval
of interest [a, b] are calculated and denoted as ISEO and ISEE,
respectively. A corresponding entry in the Table is written as
A/B where A is the median of 5000 ratios ISEO/ISEE and B

is the average number of observations fallen within the con-
sidered interval [a, b]. The fifth column shows coefficients of
difficulty d∗.

n
X∗ T ∗ Z∗ [a, b] d∗ 100 200 300 400 500 1000
W (3, 4) U(0, 3) U(3, 10) [0.5, 4] 1.84 0.80/59 0.92/118 1.07/177 1.20/237 1.15/295 1.41/590
W (3, 4) U(0, 3) U(3, 10) [1, 4] 1.79 0.71/58 0.87/116 0.88/174 1.10/232 1.01/290 1.32/580
W (3, 4) U(0, 3) U(3, 10) [1, 5] 6.88 0.71/80 0.89/161 1.02/241 1.03/320 1.26/400 1.41/800
W (1.2, 5) E(1) E(0.05) [1, 5] 1.59 0.92/48 1.03/95 1.27/143 1.33/200 1.45/251 1.43/480
W (0.5, 2) E(2) E(0.05) [0.5, 8] 4.70 0.72/46 0.80/91 0.86/138 0.97/182 1.07/230 1.44/462
W (0.5, 2) E(5) E(0.05) [0.1, 3] 1.89 0.69/47 0.83/95 0.90/142 0.94/190 1.01/237 1.24/474
W (0.3, 1) E(2) E(0.05) [0.2, 6] 2.45 0.73/32 0.92/64 1.00/96 1.08/128 1.19/160 1.58/320
W (3, 2) E(1) E(0.15) [1, 2] 1.90 0.91/38 0.99/74 1.13/111 1.11/151 1.24/188 1.56/371
W (3, 2) E(1) E(0.15) [0.5, 2] 2.08 0.84/45 0.91/91 1.09/137 1.04/182 1.15/229 1.42/456
W (3, 2) E(1.5) E(0.1) [0.5, 2.5] 6.70 0.76/72 0.94/144 1.03/215 1.12/287 1.10/360 1.47/720
BT E(80) E(0.5) [0.05, 0.9] 1.74 0.78/45 0.90/90 1.08/135 1.16/180 1.38/225 1.40/450
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CONCLUSION FROM TABLE 1

Only for the smallest sample sizes n ≤ 200 the oracle dominates

the estimator. The main reason of this domination is that sizes of

subsamples, used by the estimator and shown in denominators of

corresponding cells, are small for nonparametric estimation.

Furthermore, remember that the oracle uses the unknown function

g(x) and the underlying hazard rate function hX
∗
(x) to calculate the

golden-rule bandwidth, and the latter is helpful for the smallest

samples. Coefficients of difficulty d∗ shed light on relative

complexity of a particular experiment.
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ANALYSIS OF REAL DATA

CHANNING HOUSE: It is a retirement center located in Palo

Alto, California, and its distinctive feature is that all residents of

the community are covered by a health care program with a zero

deductible, that is, no additional financial burden to the residents.

The data were collected between the opening of the house in Jan-

uary 1964 and July 1975. In that period of time 97 men and 365

women passed through the center, and among them 130 women and

46 men died at Channing House. The resident’s age at entry to the

community as well as the age at leaving the community or death

were recorded. Note that when a person joined the community, he

or she was alive at that time, and the person’s age at death was at

least as great as the age at entry to the community and thus was

left truncated. If the resident was alive when the study ended or

the resident left the community before the study ended, right cen-

soring had occurred. Differences between the survival hazard rates

for male and female residents was the primary aim of the study.
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WHEL STUDY: The project, supported by NIH, was designed to

address the question of whether high intake of vegetables and fruits

could reduce breast cancer recurrence. The project included 3088

women previously treated for breast cancer and who were cancer-

free at the baseline. Participants were randomly assigned to either

an intensive diet intervention or to a comparison group, this was

done from year 1995 to year 2000, and then participants were fol-

lowed upon through 2006. Plasma carotenoids concentrations, in-

cluding alpha-carotene, beta-carotene, lutein, lycopene and cryp-

toxanthin, were measured at baseline using blood samples (only

3044 participants provided blood samples and therefore are con-

sidered in the example). One of the main aims of the study was

to examine the relationship between a plasma carotenoids concen-

tration ( as an indicator of dietary intake) and recurrence-free sur-

vival. The variable of interest, X∗, is the recurrence-free survival

time which is defined as the time from the date of initial breast

cancer diagnosis (for all our purposes that date can be considered

as the date of surgery) to the date of diagnosis of the cancer relapse.
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In our analysis of the data, for each type of plasma carotenoid,

we divided 3044 patients, who provided blood samples at base-

line, into two groups using the median concentration as the thresh-

old. For example, if alpha-carotene is the variable of interest, then

participants whose plasma alpha-carotene was above the median

value were classified as group 1 and participants with plasma alpha-

carotine below the median were classified as group 2. Then for each

group the proposed adaptive hazard rate estimator was used to esti-

mate the hazard rate for the time from surgery to relapse. Similarly

paired estimates were calculated for other types of carotenoids.
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T-TEST

In all our practical examples we compared hazard rates for two pop-

ulations, and in all cases nonparametric estimates have indicated

that average hazard rates are different. Hence, it is reasonable

to evaluate an integrated hazard rate over the interval of interest

µ =
∫ b
a h

X∗
(x)dx for each population and then compare them. Let µ1

and µ2 denote integrated over [a, b] hazard rates for first and second

populations considered in the above-discussed examples. Then it

is natural to test the null hypothesis µ1 = µ2 versus the alternative

hypothesis µ1 > µ2. To shed a different light on the hypotheses,

remember that a survival function GX∗
(x) = e−

∫ x

0
hX

∗
(v)dv, and then

for any two populations with hazard rates hX
∗
1 and hX

∗
2 we have

ln
([GX∗

1 (b)

GX∗
1 (a)

]
/
[GX∗

2 (b)

GX∗
2 (a)

])
=

∫ b

a

[hX
∗
2 (x)− hX∗

1 (x)]dx = µ2 − µ1.

In particular, if a = 0 then we get GX∗
1 (b)/GX∗

2 (b) = eµ2−µ1.

Because µ = EhX∗{Rg−1(Y )I(Y ∈ [a, a + b])} , the natural estimate of

µ is µ̂ :=
∑n

l=1Rlη
−1
l I(Yl ∈ [a, a + b]). In its turn, this estimate allows

us to use a standard t-test for comparison between means of two

populations.
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Table 2. Results for hypothesis testing.

Example µ̂1 µ̂2 Var(µ̂1) Var(µ̂2) p-value
Channing House 1.08 0.85 0.0263 0.0065 0.1003
Alpha-carotene 0.16 0.20 0.00013 0.00017 0.0047
Beta-carotene 0.16 0.21 0.00013 0.00017 0.0017
Cryptoxanthin 0.17 0.19 0.00014 0.00016 0.1195
Lycopene 0.16 0.20 0.00014 0.00017 0.0115
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CONFIDENCE BANDS

For Channing House example and WHEL data are shown in Figure

5. Here, following Wasserman (2005), we show confidence bands

for E{ĥ(x)}. The top diagram in Figure 5 exhibites 80 percent con-

fidence bands for male and female hazard rates. As we see, there

is a relatively small interval (about 20 months) around 930 months

where the two confidence bands do not intersect. Furthermore,

there is a larger interval in time (about 200 months) where each

estimate is not covered by confidence band for another edstimate.

The left-bottom diagram shows 90 percent confidence bands for two

groups of participants in the WHEL study with different levels of

alpha-carotene. As we see, there is a relatively large period in time

when the two confidence bands do not intersect. To see something

similar for beta-carotine, it is required to use 80 percent confidence

bands (see the right-bottom diagram). Note that it is typical for

nonparametric confidence bands to be much wider near boundaries

(see Wasserman 2005). For the Channing House example this phe-

nomenon is more pronounce for the right boundary, and for the

WHEL study both boundaries are affected.
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Figure 1: Estimation of a hazard rate function (solid line) by oracle kernel estimator (dot-
dash line) and proposed estimator (longdash line). The top left, right top and two bottom
diagrams correspond to the third, sixth and eleventh experiments described in Table 1. Sub-
titles show the total sample size n and the number m of Y s observed within an interval of
estimation.
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Figure 2: Analysis of the Channing House data. The left diagram shows estimated hazard
rates for male (the dotted line) and female (the solid line) residents. The right diagram
shows the relative hazard rate which is the ratio of the male’s estimated hazard rate to the
female’s estimated hazard rate.
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Figure 3: Estimated hazard rates for two groups of women in WHEL study. The two top
diagrams show the proposed estimates, the two bottom diagrams show estimates that ignore
left truncation. Women with larger than the median alpha-carotene level (the left column
of diagrams) or larger than the median beta-carotene level (the right column of diagrams)
belong to the second group, and correspondingly others to the first group.

29



Estimates take into account truncation

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4

Cryptoxanthin

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4

Lycopene

Recurrence−free survival

group 1
group 2

Estimates ignore truncation

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4

Cryptoxanthin

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4
Lycopene

Recurrence−free survival

group 1
group 2

Figure 4: Estimated hazard rates for two groups of women in WHEL study. Structure of
Figure 3 is identical to Figure 2 only here the effects of larger concentrations of cryptoxanthin
and lycopene are studied.
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Figure 5: Confidence bands. The top diagram shows 80 perecent confidence bands for the
Channing House data. Two bottom diagrams devoted to WHEL study and show 90 and 80
percent confidence bands for alpha-carotine and beta-carotine, respectively.
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