Optimal Capital Allocation: Mean-Variance Models

Krzysztof Ostaszewski Maochao Xu

Department of Mathematics Illinois State University

> < 🗇 🕨 Stochastic orders and applications in actuarial science

< ∃ > < 3

Capital allocation

Assume we have *n* risks X_1, \ldots, X_n . Then, the aggregate loss is

$$S = \sum_{i=1}^n X_i,$$

where this aggregate loss S can be interpreted as:

- the total loss of a corporate, e.g. an insurance company, with the individual losses corresponding to the losses of the respective business units;
- the loss from an insurance portfolio, with the individual losses being those arising from the different policies; or
- the loss suffered by a financial conglomerate, while the different individual losses correspond to the losses suffered by its subsidiaries.

ヘロト 人間 ト ヘヨト ヘヨト

Capital allocation

S is the aggregate loss faced by an insurance company and X_i the loss of business unit *i*. Assume that the company has already determined the aggregated level of capital and denote this total risk capital by *I*:

$$I=I_1+I_2+\ldots+I_n.$$

What is the optimal allocation strategy?

Allocation formulas

Haircut allocation

It is a common industry practice, driven by banking and insurance regulations, to measure stand alone losses by a VaR for a given probability level *p*. Assume that

$$I_i = \frac{I}{\sum_{j=1}^n F_j^{-1}(p)} F_i^{-1}(p);$$

• Quantile allocation-Dhaene et al., 2002, IME The comonotonic sum is

$$S^c = \sum_{i=1}^n F_i^{-1}(U),$$

where U is a uniform random variable on (0, 1). Then,

$$I_i = F_i^{-1}(F_{S^c}(I));$$

Stochastic orders and applications in actuarial science

Allocation formulas

• Covariance allocation-Overbeck, 2002

$$I_i = \frac{I}{\operatorname{Var}(S)} \operatorname{Cov}(X_i, S);$$

CTE allocation

$$I_i = \frac{I}{\operatorname{CTE}_{\rho}(S)} \operatorname{E}\left(X_i | S > F_S^{-1}(\rho)\right),$$

where

$$\operatorname{CET}_{\rho}(S) = \operatorname{E}\left(S|S > F_{S}^{-1}(\rho)\right).$$

Stochastic orders and applications in actuarial science

イロト イポト イヨト イヨト

э

Optimal capital allocation

Decision criterion: Capital should be allocated such that for each business unit the allocated capital and the loss are sufficiently close to each other.

Dhaene, et al. (2011) proposed the following optimization problem to model the capital allocation problem:

$$\min_{\mathbf{l}\in\mathcal{A}}\sum_{i=1}^{n}\mathbf{v}_{i}\mathrm{E}\left[\zeta_{i}\mathbf{D}\left(\frac{X_{i}-I_{i}}{v_{i}}\right)\right], \ s.t. \ \sum_{i=1}^{n}I_{i}=I$$

where v_i are nonnegative real numbers such that $\sum_{i=1}^{n} v_i = 1$, and the ζ_i are non-negative random variables such that $E[\zeta_j] = 1$.

ヘロト ヘアト ヘビト ヘビト

- The non-negative real number v_j is a measure of exposure or business volume of the *j*-th unit, such as revenue, insurance premium, etc;
- The terms **D** quantify the deviations of the outcomes of the losses X_i from their allocated capital K_i;
- The expectations involve non-negative random variables ζ_j with E[ζ_j] = 1 that are used as weight factors to the different possible outcomes D (X_i I_i).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Quadratic optimization

$$\mathbf{D}(x)=x^2.$$

Consider the following optimization:

$$\min_{\mathbf{l}\in\mathcal{A}}\sum_{i=1}^{n} \mathbb{E}\left[\zeta_{i}\frac{(X_{i}-l_{i})^{2}}{V_{i}}\right], \ s.t. \ \sum_{i=1}^{n}l_{i}=l.$$

Then, the optimal solution is (Dhaene, et al., 2002)

$$I_i = \mathrm{E}\left(\zeta_i X_i\right) + v_i \left(I - \sum_{j=1}^n \mathrm{E}(\zeta_j X_j)\right), \quad i = 1, \ldots, n.$$

Stochastic orders and applications in actuarial science

Convex loss function

In the previous work (Xu and Hu, 2012, IME, 50, 293-298), we considered how the different capital allocation strategies affect the loss function under the general setup. Specifically, the loss function is defined as

$$\mathbf{L}(\mathbf{I}) = \sum_{i=1}^{n} \phi_i(X_i - I_i), \, \mathbf{I} \in \mathbf{A}$$

for some suitable convex functions ϕ_i , where

$$\mathbf{A} = \left\{ (I_1, \ldots, I_n) : \sum_{i=1}^n I_i = I \right\}.$$

Stochastic orders and applications in actuarial science

Convex loss function

discuss the the following optimisation problem:

$$\min_{\mathbf{l}\in\mathcal{A}}\sum_{i=1}^{n}\mathrm{P}\left(\mathbf{L}(\mathbf{l})\geq t\right),\quad\forall t\geq0;$$

or equivalently,

 $\min_{\mathbf{I}\in A} \mathrm{E}[\Phi\left(\mathbf{L}(\mathbf{I})\right)],$

for some increasing function Φ , which could be interpreted as a utility function.

Motivation for Mean-variance models

However, most of the discussion on this topic in the literature has focused only on the magnitude of the loss function *L*. In practice, we might also be interested in the variability of the loss function *L*. The relevant idea has appeared in the premium calculation, see, for example, Valdez (2005) and Furman and Landsman (2006). Furman and Landsman (2006) used the tail variance risk (TVP) measure estimating the variability along the tails to compute the premium.

$$\operatorname{TVP}_q(X) = \operatorname{TCE}_q(X) + \beta \operatorname{TV}_q(X), \quad \beta \ge 0,$$

where TCE_q means conditional tail expectation,

$$\operatorname{TCE}_q(X) = \operatorname{E}(X|X > x_q), \quad \operatorname{TV}_q(X) = \operatorname{var}(X|X > x_q),$$

where x_q is qth quantile of X or Value-at-Risk (VaR).

The idea of incorporating the variability with the mean might be traced back to the Mean-Variance framework; see, for example, Steinbach (2001) and Landsman (2010). The mean variance (MV) model uses the Mean-Variance risk measurement

$$MV(X) = E(X) + \beta var(X), \quad \beta \ge 0,$$

which is also known as the expected quadratic utility in finance literature.

MV models for capital allocation

we propose two new MV models to allocation capitals, which control both magnitude and variability of the loss function Lusing the quadratic function as the distance measure. More specifically, we consider the following MV model:

P1:
$$\begin{cases} \min_{\boldsymbol{p}\in\mathcal{A}} \left\{ \alpha \mathbb{E} \left[\sum_{i=1}^{n} (X_{i} - p_{i})^{2} \right] + (1 - \alpha) \operatorname{Var} \left(\sum_{i=1}^{n} (X_{i} - p_{i})^{2} \right) \right] \\ \mathcal{A} = \left\{ \boldsymbol{p} \in \Re^{n} : p_{1} + \dots + p_{n} = p \right\}, \end{cases}$$
(1)

where $0 \le \alpha \le 1$. This optimization problem might be interpreted as $100\alpha\%$ compromise between the mean and variance.

MV models for capital allocation

The second MV model follows the idea of traditional MV model:

P2:
$$\begin{cases} \min_{\boldsymbol{p}\in\mathcal{A}} \left\{ \mathbb{E}\left[\sum_{i=1}^{n} \left(X_{i} - p_{i}\right)^{2}\right] + \beta \operatorname{var}\left(\sum_{i=1}^{n} \left(X_{i} - p_{i}\right)^{2}\right) \right\}; \\ \mathcal{A} = \left\{\boldsymbol{p}\in\Re^{n}: p_{1} + \dots + p_{n} = p\right\}, \end{cases}$$
(2)

where $\beta > 0$. The optimization problems P1 and P2 are equivalent by setting $\beta = (1 - \alpha)/\alpha$. However, Models P1 and P2 have different interpretations.

For Model P1, we have the following result.

Theorem

If the covariance matrix Σ of (X_1, \ldots, X_n) is positively definite, then $\boldsymbol{p}^* = (\boldsymbol{p}_1^*, \ldots, \boldsymbol{p}_n^*)$ is an optimal allocation solution to Problem P1, given by

$$p_i^* = rac{p - \sum_{k=1}^n \sum_{l=1}^n a_{kl} \delta_l}{\sum_{k=1}^n \sum_{l=1}^n a_{kl}} \sum_{j=1}^n a_{ij} + \sum_{j=1}^n a_{ij} \delta_j, \quad i = 1, \dots, n,$$

where

$$\delta_i = 4(1-\alpha)\sum_{j=1}^n \sigma_{2,j,i} + 2\alpha\mu_i,$$

 $\sigma_{2,j,i} = \text{Cov}(X_j^2, X_i), \mu_i = \mathbb{E}(X_i), \text{ and } (a_{ij})_{n \times n} \text{ is the inverse matrix of } A = 8(1 - \alpha)\Sigma + 2\alpha I_n, \text{ where } I_n \text{ is the identity matrix.}$

Similarly, we give the optimization solution to Problem P2.

Theorem

If the covariance matrix Σ of (X_1, \ldots, X_n) is positively definite, then $\mathbf{p}^* = (p_1^*, \ldots, p_n^*)$ is an optimal allocation solution to Problem P2, given by

$$p_i^* = \frac{p - \sum_{k=1}^n \sum_{l=1}^n a_{kl} \delta_l}{\sum_{k=1}^n \sum_{l=1}^n a_{kl}} \sum_{j=1}^n a_{ij} + \sum_{j=1}^n a_{ij} \delta_j, \quad i = 1, \dots, n,$$

where

$$\delta_i = \mathbf{4}\beta \sum_{j=1}^n \sigma_{2,j,i} + \mathbf{2}\mu_i,$$

 $\sigma_{2,j,i} = \text{Cov}(X_j^2, X_i), \mu_i = \mathbb{E}(X_i), \text{ and } (a_{ij})_{n \times n} \text{ is the inverse matrix of } A = 8\beta \sum +2I_n.$

Stochastic orders and applications in actuarial science

イロト イポト イヨト イヨト

э

Some special cases

Corollary

Let X_1, \ldots, X_n be independent random variables. Then $\boldsymbol{p}^* = (\boldsymbol{p}_1^*, \ldots, \boldsymbol{p}_n^*)$ is an optimal allocation solution to P1, given by

$$p_i^* = \mu_i + \frac{1}{4(1-\alpha)\sigma_i^2 + \alpha} \times \left[\frac{p - \sum_{j=1}^n \mu_j - \sum_{j=1}^n [2(1-\alpha)\gamma_j\sigma_j^2]/[4(1-\alpha)\sigma_j^2 + \alpha]}{\sum_{j=1}^n 1/[4(1-\alpha)\sigma_j^2 + \alpha]} + 2(1-\alpha)\gamma_i\sigma_i^3 \right],$$

where $\mu_j = \mathbb{E}(X_j)$, and $\gamma_j = \mathbb{E}(X_j - \mu_j)^3 / \sigma_j^3$, the skewness of X_j .

イロン 不良 とくほう 不良 とうほ

Corollary

Let X_1, \ldots, X_n be exchangeable random variables. If $\boldsymbol{p}^* = (\boldsymbol{p}_1^*, \ldots, \boldsymbol{p}_n^*)$ is an optimal allocation solution to Problem P1 (P2), then

$$p_1^*=\cdots=p_n^*=rac{p}{n}$$

Stochastic orders and applications in actuarial science

イロト イポト イヨト イヨト 一臣

In fact, if X_1, \ldots, X_n are exchangeable random variables, we may have a general result. First, we recall the concepts of majorization and of Schur-convexity. Let $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ be the increasing arrangement of components of the vector $\boldsymbol{x} = (x_1, \ldots, x_n)$. For vectors $\boldsymbol{x}, \boldsymbol{y} \in \Re^n$, \boldsymbol{x} is said to be majorized by \boldsymbol{y} , denoted by $\boldsymbol{x} \preceq_m \boldsymbol{y}$, if

$$\sum_{i=1}^{j} x_{(i)} \ge \sum_{i=1}^{j} y_{(i)} \text{ for } j = 1, \dots, n-1,$$

and $\sum_{i=1}^{n} x_{(i)} = \sum_{i=1}^{n} y_{(i)}$. A real-valued function ϕ defined on a set $A \subseteq \Re^{n}$ is said to be Schur-convex on A if, for any $\mathbf{x}, \mathbf{y} \in A$,

$$\boldsymbol{x} \succeq_{\mathrm{m}} \boldsymbol{y} \Longrightarrow \phi(\boldsymbol{x}) \geq \phi(\boldsymbol{y}).$$

For extensive and comprehensive details on the theory of majorization orders and their applications, please refer to Marshall et al. (2011).

Theorem

Let X_1, \ldots, X_n be exchangeable random variables. If

$$(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n) \succeq_{\mathrm{m}} (\boldsymbol{p}_1^*,\ldots,\boldsymbol{p}_n^*),$$

then

$$\mathbb{E}\left(\sum_{i=1}^{n} (X_i - p_i)^2\right) \geq \mathbb{E}\left(\sum_{i=1}^{n} (X_i - p_i^*)^2\right),$$

and

$$\operatorname{Var}\left(\sum_{i=1}^{n}\left(X_{i}-p_{i}\right)^{2}\right)\geq\operatorname{Var}\left(\sum_{i=1}^{n}\left(X_{i}-p_{i}^{*}\right)^{2}
ight).$$

Stochastic orders and applications in actuarial science

ヘロト 人間 とくほとくほとう

ъ

Centrally symmetric distributions

A random vector $\mathbf{X} = (X_1, \dots, X_n)$ has a distribution centrally symmetric about $\mu = (\mu_1, \dots, \mu_n)$ if $\mathbf{X} - \mu$ and $\mu - \mathbf{X}$ have the same distribution. It includes many distribution families, one of which is elliptical distribution family. Elliptical distributions are generalizations of the multivariate normal distributions. The class of elliptical distributions contains many well-known distributions as special cases:

- multivariate normal
- multivariate Cauchy
- multivariate exponential
- multivariate t-distributions

(同) くほり くほう

Assume X_1, \ldots, X_n have a distribution centrally symmetric about $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_n)$. If the covariance matrix Σ of (X_1, \ldots, X_n) is positively definite, and $\boldsymbol{p}^* = (p_1^*, \ldots, p_n^*)$ is an optimal allocation solution to Problem P1 (P2), then

$$p_{i}^{*} = \frac{p - \sum_{k=1}^{n} \sum_{l=1}^{n} a_{kl} \delta_{l}}{\sum_{k=1}^{n} \sum_{l=1}^{n} a_{kl}} \sum_{j=1}^{n} a_{jj} + \sum_{j=1}^{n} a_{jj} \delta_{j},$$

where $\delta_i = 8(1 - \alpha) \sum_{j=1}^n \mu_j \sigma_{j,i} + 2\alpha \mu_i$ $(\delta_i = 8\beta \sum_{j=1}^n \mu_j \sigma_{j,i} + 2\mu_i), \mu_j = E(X_j), \text{ and } \sigma_{j,i} = \text{Cov}(X_j, X_i).$

Stochastic orders and applications in actuarial science

イロト 不得 とくほ とくほ とうほ

We use the data reported in *Panjer* (2002). In that example, an insurance company has 10 lines of business with risks represented by the random vector $\mathbf{X} = (X_1, \dots, X_{10})$. Table 1 reports optimal allocation strategies for different α 's with a total capital p = 200. Table 2 reports the case for different β 's for Problem P2. It might be observed that we have negative allocations which reflect the diversification benefit, in that these lines of business may reduce capital requirements for the the company as a whole.

P1 with a total capital p = 200 and different α values

α	0	.1	.2	.3	.4	.5
<i>p</i> ₁ *	-39.477	-17.464	-6.564	0.343	5.407	9.513
	133.010	120.886	111.949	103.745	95.468	86.719
$p_3^{\overline{*}}$	193.612	125.578	91.796	70.746	55.914	44.620
p_4^*	21.532	21.972	23.632	25.739	28.023	30.312
p_5^*	30.812	27.869	26.257	24.892	23.470	21.868
p_6^*	75.951	88.926	92.671	92.691	90.543	86.746
P [*] 2*3 P [*] 3*4 P [*] 5*6 P [*] 6*7	23.138	28.453	30.753	31.886	32.388	32.453
p_8^*	-117.865	-94.850	-81.075	-70.303	-60.548	-50.878
$p_8^* \\ p_9^*$	-94.977	-82.504	-73.940	-66.437	-59.034	-51.215
p_{10}^{*}	-25.736	-18.867	-15.480	-13.304	-11.631	-10.138
α	.6	.7	.8	.9	1	
<i>p</i> [*] ₁	13.120	16.530	20.054	24.339	32.277	
	77.253	66.954	55.992	45.609	44.427	
$p_3^{\overline{*}}$	35.535	27.899	21.198	14.935	7.437	
p_4^*	32.412	33.997	34.372	31.713	19.287	
p [*] 2 p [*] 3 p [*] 4 p [*] 5 p [*] 6 p [*] 7	20.023	17.876	15.338	12.173	6.737	
p_6^*	81.394	74.308	64.986	52.135	30.637	
p_7^*	32.135	31.397	30.067	27.587	20.997	
p_8^*	-40.693	-29.490	-16.785	-2.283	11.077	
$p_8^* \\ p_9^*$	-42.574	-32.682	-20.968	-6.532	10.977	
p_{10}^{*}	-8.605	-6.790	-4.254	0.323	< 16.147 ▶	${\bf e} \equiv {\bf e}_{i} \in \Xi_{i}$

Stochastic orders and applications in actuarial science

ъ

P2 with a total capital p = 200 and different β values

β	.1	.2	.3	.4	.5	.6
'			-		-	-
<i>p</i> [*] ₁	24.825	21.340	18.933	17.018	15.398	13.980
p ₂ *	44.823	52.336	59.399	65.417	70.479	74.757
p ₃ *	14.361	19.092	23.188	26.895	30.318	33.513
p_{4}^{*}	31.175	33.980	34.457	34.148	33.557	32.875
$\begin{array}{c} p_5^*\\ p_6^*\end{array}$	11.834	14.374	16.169	17.541	18.630	19.517
p_6^*	50.686	61.205	68.144	73.132	76.885	79.798
p ₇ *	27.251	29.422	30.560	31.250	31.696	31.994
p*	-0.893	-12.146	-20.881	-27.777	-33.367	-38.007
<i>p</i> ₉ *	-5.038	-16.519	-24.811	-31.136	-36.150	-40.238
p*10	0.975	-3.084	-5.157	-6.487	-7.446	-8.190
β	.7	.8	.9	1	2	3
p_1^*	12.711	11.558	10.497	9.513	2.178	-2.793
p ₂ *	78.410	81.560	84.305	86.719	101.019	107.822
$p_3^{\overline{*}}$	36.517	39.357	42.053	44.620	65.286	80.230
$\begin{array}{c c} p_3^{\overline{*}} \\ p_4^{*} \end{array}$	32.183	31.518	30.893	30.312	26.490	24.651
p_5^*	20.255	20.877	21.408	21.868	24.433	25.570
p_6^*	82.108	83.970	85.491	86.746	92.178	93.012
p ₇ *	32.193	32.324	32.406	32.453	32.110	31.420
p*8	-41.935	-45.317	-48.269	-50.878	-66.996	-75.478
p_9^*	-43.647	-46.542	-49.037	-51.215	-63.988	-70.133
p_{10}^*	-8.795	-9.305	-9.747	-10.138	-12.710	-14.300

Stochastic orders and applications in actuarial science

ъ

Multivariate gamma distribution

There are a number of multivariate gamma distributions in the literature. In the following, we consider losses or risks which follow a multivariate gamma distribution introduced by Cheriyan (1941), and generalized by Mathai and Moschopoulos (1991). This distribution has been examined in Furman and Lansman (2005) for risk capital allocations. Let X_1, \ldots, X_n be independent gamma random variables with $X_i \sim \Gamma(\alpha_i, \beta_i)$, $i = 0, \ldots, n$. Denote

$$Y_j = \frac{\beta_0}{\beta_j} X_0 + X_j, \quad j = 1, \dots, n.$$

The joint distribution of the random vector $\mathbf{Y}^{\tau} = (Y_1, \dots, Y_n)$ is the multivariate gamma distribution defined in Mathai and Moschopoulos (1991).

イロト イポト イヨト イヨト

Assume that a company has three business lines Y_1 , Y_2 , Y_3 , which follow a multivariate gamma distribution defined in Mathai and Moschopoulos (1991), with underlying random variables (X_0, X_1, X_2, X_3) . Assume that $(\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (1, 2, 3, 5)$, and $(\beta_0, \beta_1, \beta_2, \beta_3) = (.3, .1, .2, .4)$. Hence, the covariance matrix is

$$\Sigma = \left(\begin{array}{rrrr} 300 & 50 & 25 \\ 50 & 100 & 12.5 \\ 25 & 12.5 & 37.5 \end{array}\right)$$

Stochastic orders and applications in actuarial science

< 回 > < 回 > < 回 > … 回

α	p_1^*	p_2^*	p_3^*
0	5.405	51.654	12.941
.1	5.458	51.643	12.899
.2	5.525	51.629	12.846
.3	5.610	51.612	12.778
.4	5.724	51.588	12.688
.5	5.882	51.556	12.563
.6	6.118	51.506	12.376
.7	6.507	51.423	12.070
.8	7.273	51.256	11.472
.9	9.468	50.745	9.787
1	31.667	21.667	16.667

Table : Optimal capital allocations for different α 's in Problem P1 with a total capital p = 70.

イロト 不得 とくほ とくほとう

3

β	p_1^*	p_2^*	p_3^*
.1	9.889	50.641	9.469
.2	7.724	51.155	11.122
.3	6.968	51.323	11.709
.4	6.584	51.406	12.009
.5	6.352	51.456	12.192
.6	6.196	51.489	12.315
.7	6.084	51.513	12.403
.8	6.000	51.531	12.469
.9	5.934	51.545	12.521
1	5.882	51.556	12.563
2	5.644	51.606	12.751

Table : Optimal capital allocations for different β 's in Problem P2 with a total capital p = 70.

イロト 不得 とくほ とくほとう

3

It is of interest to consider the absolute deviation distance measure. For example, one may consider the following MV model:

P3:
$$\begin{cases} \min_{\boldsymbol{p}\in\mathcal{A}} \left\{ \mathbb{E}\left[\sum_{i=1}^{n} |X_i - \boldsymbol{p}_i|\right] + \beta \operatorname{Var}\left(\sum_{i=1}^{n} |X_i - \boldsymbol{p}_i|\right) \right\}; \\ \boldsymbol{A} = \left\{ \boldsymbol{p}\in\Re^n : \boldsymbol{p}_1 + \ldots + \boldsymbol{p}_n = \boldsymbol{p} \right\}, \end{cases}$$

where $\beta \ge 0$. Generally, we have to solve a nonlinear optimization problem for P3. There is no a simple closed form solution in contrast to Problem P1 or P2.

Thank you!

Stochastic orders and applications in actuarial science

イロン イロン イヨン イヨン

æ