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Capital allocation

Assume we have n risks X1, . . . ,Xn. Then, the aggregate loss is

S =
n∑

i=1

Xi ,

where this aggregate loss S can be interpreted as:
1 the total loss of a corporate, e.g. an insurance company,

with the individual losses corresponding to the losses of
the respective business units;

2 the loss from an insurance portfolio, with the individual
losses being those arising from the different policies; or

3 the loss suffered by a financial conglomerate, while the
different individual losses correspond to the losses
suffered by its subsidiaries.
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Capital allocation

S is the aggregate loss faced by an insurance company and Xi
the loss of business unit i . Assume that the company has
already determined the aggregated level of capital and denote
this total risk capital by l :

l = l1 + l2 + . . .+ ln.

What is the optimal allocation strategy?
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Allocation formulas

Haircut allocation
It is a common industry practice, driven by banking and
insurance regulations, to measure stand alone losses by a
VaR for a given probability level p. Assume that

li =
l∑n

j=1 F−1
j (p)

F−1
i (p);

Quantile allocation-Dhaene et al., 2002, IME
The comonotonic sum is

Sc =
n∑

i=1

F−1
i (U),

where U is a uniform random variable on (0,1). Then,

li = F−1
i (FSc (l));
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Allocation formulas

Covariance allocation-Overbeck, 2002

li =
l

Var(S)
Cov(Xi ,S);

CTE allocation

li =
l

CTEp(S)
E
(

Xi |S > F−1
S (p)

)
,

where
CETp(S) = E

(
S|S > F−1

S (p)
)
.
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Optimal capital allocation

Decision criterion: Capital should be allocated such that for
each business unit the allocated capital and the loss are
sufficiently close to each other.
Dhaene, et al. (2011) proposed the following optimization
problem to model the capital allocation problem:

min
l∈A

n∑
i=1

viE
[
ζiD

(
Xi − li

vi

)]
, s.t .

n∑
i=1

li = l

where vi are nonnegative real numbers such that
∑n

i=1 vi = 1,
and the ζi are non-negative random variables such that
E[ζj ] = 1.
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The non-negative real number vj is a measure of exposure
or business volume of the j-th unit, such as revenue,
insurance premium, etc;
The terms D quantify the deviations of the outcomes of the
losses Xj from their allocated capital Kj ;
The expectations involve non-negative random variables ζj
with E[ζj ] = 1 that are used as weight factors to the
different possible outcomes D (Xi − li).
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Quadratic optimization

D(x) = x2.

Consider the following optimization:

min
l∈A

n∑
i=1

E

[
ζi

(Xi − li)
2

vi

]
, s.t .

n∑
i=1

li = l .

Then, the optimal solution is (Dhaene, et al., 2002)

li = E (ζiXi) + vi

l −
n∑

j=1

E(ζjXj)

 , i = 1, . . . ,n.
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Convex loss function

In the previous work ( Xu and Hu, 2012, IME, 50, 293-298), we
considered how the different capital allocation strategies affect
the loss function under the general setup. Specifically, the loss
function is defined as

L(l) =
n∑

i=1

φi(Xi − li), l ∈ A

for some suitable convex functions φi , where

A =

{
(l1, . . . , ln) :

n∑
i=1

li = l

}
.
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Convex loss function

discuss the the following optimisation problem:

min
l∈A

n∑
i=1

P (L(l) ≥ t) , ∀t ≥ 0;

or equivalently,
min
l∈A

E[Φ (L(l))],

for some increasing function Φ, which could be interpreted as a
utility function.
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Motivation for Mean-variance models

However, most of the discussion on this topic in the literature
has focused only on the magnitude of the loss function L. In
practice, we might also be interested in the variability of the
loss function L. The relevant idea has appeared in the premium
calculation, see, for example, Valdez (2005) and Furman and
Landsman (2006). Furman and Landsman (2006) used the tail
variance risk (TVP) measure estimating the variability along the
tails to compute the premium.

TVPq(X ) = TCEq(X ) + βTVq(X ), β ≥ 0,

where TCEq means conditional tail expectation,

TCEq(X ) = E(X |X > xq), TVq(X ) = var (X |X > xq) ,

where xq is qth quantile of X or Value-at-Risk (VaR).
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The idea of incorporating the variability with the mean might be
traced back to the Mean-Variance framework; see, for example,
Steinbach (2001) and Landsman (2010). The mean variance
(MV) model uses the Mean-Variance risk measurement

MV(X ) = E(X ) + βvar(X ), β ≥ 0,

which is also known as the expected quadratic utility in finance
literature.
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MV models for capital allocation

we propose two new MV models to allocation capitals, which
control both magnitude and variability of the loss function L
using the quadratic function as the distance measure. More
specifically, we consider the following MV model:

P1 :

{
minp∈A

{
αE
[∑n

i=1 (Xi − pi)
2
]

+ (1− α)Var
(∑n

i=1 (Xi − pi)
2
)}

;

A = {p ∈ <n : p1 + · · ·+ pn = p} ,
(1)

where 0 ≤ α ≤ 1. This optimization problem might be
interpreted as 100α% compromise between the mean and
variance.
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MV models for capital allocation

The second MV model follows the idea of traditional MV model:

P2 :

{
minp∈A

{
E
[∑n

i=1 (Xi − pi)
2
]

+ βvar
(∑n

i=1 (Xi − pi)
2
)}

;

A = {p ∈ <n : p1 + · · ·+ pn = p} ,
(2)

where β > 0. The optimization problems P1 and P2 are
equivalent by setting β = (1− α)/α. However, Models P1 and
P2 have different interpretations.
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For Model P1, we have the following result.

Theorem

If the covariance matrix Σ of (X1, . . . ,Xn) is positively definite, then
p∗ = (p∗1, . . . ,p

∗
n) is an optimal allocation solution to Problem P1,

given by

p∗i =
p −

∑n
k=1

∑n
l=1 aklδl∑n

k=1
∑n

l=1 akl

n∑
j=1

aij +
n∑

j=1

aijδj , i = 1, . . . ,n,

where

δi = 4(1− α)
n∑

j=1

σ2,j,i + 2αµi ,

σ2,j,i = Cov(X 2
j ,Xi), µi = E(Xi), and (aij)n×n is the inverse matrix

of A = 8(1− α)Σ + 2αIn, where In is the identity matrix.
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Similarly, we give the optimization solution to Problem P2.

Theorem
If the covariance matrix Σ of (X1, . . . ,Xn) is positively definite,
then p∗ = (p∗1, . . . ,p

∗
n) is an optimal allocation solution to

Problem P2, given by

p∗i =
p −

∑n
k=1

∑n
l=1 aklδl∑n

k=1
∑n

l=1 akl

n∑
j=1

aij +
n∑

j=1

aijδj , i = 1, . . . ,n,

where

δi = 4β
n∑

j=1

σ2,j,i + 2µi ,

σ2,j,i = Cov(X 2
j ,Xi), µi = E(Xi), and (aij)n×n is the inverse

matrix of A = 8β
∑

+2 In.
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Some special cases

Corollary
Let X1, . . . ,Xn be independent random variables. Then
p∗ = (p∗1, . . . ,p

∗
n) is an optimal allocation solution to P1, given by

p∗i = µi +
1

4(1− α)σ2
i + α

×[
p −

∑n
j=1 µj −

∑n
j=1[2(1− α)γjσ

2
j ]/[4(1− α)σ2

j + α]∑n
j=1 1/[4(1− α)σ2

j + α]

+2(1− α)γiσ
3
i

]
,

where µj = E(Xj), and γj = E(Xj − µj)
3/σ3

j , the skewness of Xj .
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Corollary
Let X1, . . . ,Xn be exchangeable random variables. If
p∗ = (p∗1, . . . ,p

∗
n) is an optimal allocation solution to Problem P1

(P2), then
p∗1 = · · · = p∗n =

p
n
.
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In fact, if X1, . . . ,Xn are exchangeable random variables, we
may have a general result. First, we recall the concepts of
majorization and of Schur-convexity. Let x(1) ≤ x(2) ≤ · · · ≤ x(n)
be the increasing arrangement of components of the vector
x = (x1, . . . , xn). For vectors x ,y ∈ <n, x is said to be
majorized by y , denoted by x �m y , if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . ,n − 1,

and
∑n

i=1 x(i) =
∑n

i=1 y(i). A real-valued function φ defined on a
set A ⊆ <n is said to be Schur-convex on A if, for any x ,y ∈ A,

x �m y =⇒ φ(x) ≥ φ(y).

For extensive and comprehensive details on the theory of
majorization orders and their applications, please refer to
Marshall et al. (2011).
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Theorem
Let X1, . . . ,Xn be exchangeable random variables. If

(p1, . . . ,pn) �m (p∗1, . . . ,p
∗
n),

then

E

(
n∑

i=1

(Xi − pi)
2

)
≥ E

(
n∑

i=1

(Xi − p∗i )2

)
,

and

Var

(
n∑

i=1

(Xi − pi)
2

)
≥ Var

(
n∑

i=1

(Xi − p∗i )2

)
.
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Centrally symmetric distributions

A random vector X = (X1, . . . ,Xn) has a distribution centrally
symmetric about µ = (µ1, . . . , µn) if X− µ and µ− X have the
same distribution. It includes many distribution families, one of
which is elliptical distribution family. Elliptical distributions are
generalizations of the multivariate normal distributions. The
class of elliptical distributions contains many well-known
distributions as special cases:

multivariate normal
multivariate Cauchy
multivariate exponential
multivariate t-distributions
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Assume X1, . . . ,Xn have a distribution centrally symmetric
about µ = (µ1, . . . , µn). If the covariance matrix Σ of
(X1, . . . ,Xn) is positively definite, and p∗ = (p∗1, . . . ,p

∗
n) is an

optimal allocation solution to Problem P1 (P2), then

p∗i =
p −

∑n
k=1

∑n
l=1 aklδl∑n

k=1
∑n

l=1 akl

n∑
j=1

aij +
n∑

j=1

aijδj ,

where δi = 8(1− α)
∑n

j=1 µjσj,i + 2αµi

(δi = 8β
∑n

j=1 µjσj,i + 2µi ), µj = E(Xj), and σj,i = Cov(Xj ,Xi).
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Example

We use the data reported in Panjer (2002). In that example, an
insurance company has 10 lines of business with risks
represented by the random vector X = (X1, . . . ,X10). Table 1
reports optimal allocation strategies for different α’s with a total
capital p = 200. Table 2 reports the case for different β’s for
Problem P2. It might be observed that we have negative
allocations which reflect the diversification benefit, in that these
lines of business may reduce capital requirements for the the
company as a whole.
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P1 with a total capital p = 200 and different α values

α 0 .1 .2 .3 .4 .5
p∗

1 -39.477 -17.464 -6.564 0.343 5.407 9.513
p∗

2 133.010 120.886 111.949 103.745 95.468 86.719
p∗

3 193.612 125.578 91.796 70.746 55.914 44.620
p∗

4 21.532 21.972 23.632 25.739 28.023 30.312
p∗

5 30.812 27.869 26.257 24.892 23.470 21.868
p∗

6 75.951 88.926 92.671 92.691 90.543 86.746
p∗

7 23.138 28.453 30.753 31.886 32.388 32.453
p∗

8 -117.865 -94.850 -81.075 -70.303 -60.548 -50.878
p∗

9 -94.977 -82.504 -73.940 -66.437 -59.034 -51.215
p∗

10 -25.736 -18.867 -15.480 -13.304 -11.631 -10.138
α .6 .7 .8 .9 1
p∗

1 13.120 16.530 20.054 24.339 32.277
p∗

2 77.253 66.954 55.992 45.609 44.427
p∗

3 35.535 27.899 21.198 14.935 7.437
p∗

4 32.412 33.997 34.372 31.713 19.287
p∗

5 20.023 17.876 15.338 12.173 6.737
p∗

6 81.394 74.308 64.986 52.135 30.637
p∗

7 32.135 31.397 30.067 27.587 20.997
p∗

8 -40.693 -29.490 -16.785 -2.283 11.077
p∗

9 -42.574 -32.682 -20.968 -6.532 10.977
p∗

10 -8.605 -6.790 -4.254 0.323 16.147
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P2 with a total capital p = 200 and different β values

β .1 .2 .3 .4 .5 .6
p∗

1 24.825 21.340 18.933 17.018 15.398 13.980
p∗

2 44.823 52.336 59.399 65.417 70.479 74.757
p∗

3 14.361 19.092 23.188 26.895 30.318 33.513
p∗

4 31.175 33.980 34.457 34.148 33.557 32.875
p∗

5 11.834 14.374 16.169 17.541 18.630 19.517
p∗

6 50.686 61.205 68.144 73.132 76.885 79.798
p∗

7 27.251 29.422 30.560 31.250 31.696 31.994
p∗

8 -0.893 -12.146 -20.881 -27.777 -33.367 -38.007
p∗

9 -5.038 -16.519 -24.811 -31.136 -36.150 -40.238
p∗

10 0.975 -3.084 -5.157 -6.487 -7.446 -8.190
β .7 .8 .9 1 2 3
p∗

1 12.711 11.558 10.497 9.513 2.178 -2.793
p∗

2 78.410 81.560 84.305 86.719 101.019 107.822
p∗

3 36.517 39.357 42.053 44.620 65.286 80.230
p∗

4 32.183 31.518 30.893 30.312 26.490 24.651
p∗

5 20.255 20.877 21.408 21.868 24.433 25.570
p∗

6 82.108 83.970 85.491 86.746 92.178 93.012
p∗

7 32.193 32.324 32.406 32.453 32.110 31.420
p∗

8 -41.935 -45.317 -48.269 -50.878 -66.996 -75.478
p∗

9 -43.647 -46.542 -49.037 -51.215 -63.988 -70.133
p∗

10 -8.795 -9.305 -9.747 -10.138 -12.710 -14.300
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Multivariate gamma distribution

There are a number of multivariate gamma distributions in the
literature. In the following, we consider losses or risks which
follow a multivariate gamma distribution introduced by Cheriyan
(1941), and generalized by Mathai and Moschopoulos (1991).
This distribution has been examined in Furman and Lansman
(2005) for risk capital allocations. Let X1, . . . ,Xn be
independent gamma random variables with Xi ∼ Γ(αi , βi),
i = 0, . . . ,n. Denote

Yj =
β0

βj
X0 + Xj , j = 1, . . . ,n.

The joint distribution of the random vector Yτ = (Y1, . . . ,Yn) is
the multivariate gamma distribution defined in Mathai and
Moschopoulos (1991).
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Example

Assume that a company has three business lines Y1,Y2,Y3,
which follow a multivariate gamma distribution defined in Mathai
and Moschopoulos (1991), with underlying random variables
(X0,X1,X2,X3). Assume that (α0, α1, α2, α3) = (1,2,3,5), and
(β0, β1, β2, β3) = (.3, .1, .2, .4). Hence, the covariance matrix is

Σ =

 300 50 25
50 100 12.5
25 12.5 37.5

 .
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α p∗1 p∗2 p∗3
0 5.405 51.654 12.941
.1 5.458 51.643 12.899
.2 5.525 51.629 12.846
.3 5.610 51.612 12.778
.4 5.724 51.588 12.688
.5 5.882 51.556 12.563
.6 6.118 51.506 12.376
.7 6.507 51.423 12.070
.8 7.273 51.256 11.472
.9 9.468 50.745 9.787
1 31.667 21.667 16.667

Table : Optimal capital allocations for different α’s in Problem P1 with
a total capital p = 70.
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β p∗1 p∗2 p∗3
.1 9.889 50.641 9.469
.2 7.724 51.155 11.122
.3 6.968 51.323 11.709
.4 6.584 51.406 12.009
.5 6.352 51.456 12.192
.6 6.196 51.489 12.315
.7 6.084 51.513 12.403
.8 6.000 51.531 12.469
.9 5.934 51.545 12.521
1 5.882 51.556 12.563
2 5.644 51.606 12.751

Table : Optimal capital allocations for different β’s in Problem P2 with
a total capital p = 70.
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Discussion

It is of interest to consider the absolute deviation distance
measure. For example, one may consider the following MV
model:

P3 :

{
minp∈A

{
E
[∑n

i=1 |Xi − pi |
]

+ βVar
(∑n

i=1 |Xi − pi |
)}

;

A = {p ∈ <n : p1 + . . .+ pn = p} ,

where β ≥ 0. Generally, we have to solve a nonlinear
optimization problem for P3. There is no a simple closed form
solution in contrast to Problem P1 or P2.
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Thank you!
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