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Background: 

Relevant literature: 
 

• Advanced Correlations (2012 MetaRisk® Conference), Steve White 
 

• The Common Shock Model (Variance Vol. 1/Issue 1 1997) Glenn Meyers 
 

• The Calculation of Aggregate Loss Distribution from Claim Severity and 

Claim Count distributions (PCAS, LXX, 1983), Philip Heckman, Glenn 

Meyers 
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Background: 

Common Shock modeling (a.k.a. Contagion modeling): 
 

• Attempts to account for the additional, systematic, uncertainty within Insurance 

data: 
 

• Claim Counts (Frequency) distributions: 
 

• Exposure-base, of the insured, changes over-time. 

• Specifically: over the range of historical data. 
 

• IBNR claims must be estimated. 

• External drivers can cause change in claim frequencies:  

• Severe recession  increase fire claims 
 

• Claim Size (Severity) distributions: 
• External drivers of severities: 

• Inflation 

• Underwriting cycle 

• Macroeconomic factors 
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Basic Common Shock/Contagion model 

Frequency & Severity Common Shock/Contagion:              

𝑁1|𝐶~𝐹𝑟𝑒𝑞𝐷𝑖𝑠𝑡 𝜽1|𝐶

𝑁2|𝐶~𝐹𝑟𝑒𝑞𝐷𝑖𝑠𝑡 𝜽2|𝐶
⋮

𝑁𝐾|𝐶~𝐹𝑟𝑒𝑞𝐷𝑖𝑠𝑡 𝜽𝐾|𝐶

 

            Where 𝑐 is a scalar-valued parameter, the “Frequency Contagion parameter”. 

𝑋𝑘~ 𝐷𝑖𝑠𝑡𝑘 𝐸 𝑋𝑘 = 𝜇𝑘,  𝑉𝑎𝑟 𝑋𝑘 = 𝜎𝑥𝑘
2   

Let:  𝑋𝑘  be the loss size R.V., given a claim, from the 𝑘th line of business:  

𝛽~𝐷𝑖𝑠𝑡 𝐸 𝛽 = 1, 𝑉𝑎𝑟 𝛽 = 𝑏  

Where 𝑏 is a scalar-valued parameter, called the Severity Contagion parameter. 
 

Multiply each 𝑋𝑘 by the same realization of 𝛽:  𝛽𝑋𝑘         𝑘 = 1, 2 ⋯ , 𝐾  

Let: 

 Let:  𝑁𝑖, for 𝑖 = 1, 2 ⋯ , 𝐾 be 𝐾 claim count RV’s, from 𝐾 lines of business:  

Where:   
• 𝜽𝑖= vector of distribution parameters 

 

• 𝐶~𝐷𝑖𝑠𝑡  𝐸 𝐶 = 1, 𝑉𝑎𝑟 𝐶 = 𝑐  
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Poisson Frequency  

Since the same Frequency Contagion RV, 𝐶, is used within each 𝑁𝑖: 
 

•  𝑁𝑖, for 𝑖 = 1, 2 ⋯ , 𝐾 are correlated : 

If  𝑁𝒊~𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝜆𝒊 , then 𝑑𝑒𝑓𝑖𝑛𝑒:    𝑁𝒊 |𝑪~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑪𝜆𝒊       where   𝑪~𝐷𝑖𝑠𝑡  𝐸 𝐶 = 1, 𝑉𝑎𝑟 𝐶 = 𝑐  

Then, for 1 ≤ 𝑖, 𝑗 ≤ 𝐾, and 𝑖 ≠ 𝑗, 
the correlation between 𝑁𝑖 , 𝑁𝑗  is: 

𝜌𝑁𝑖,𝑁𝑗
=

𝑐𝜆𝑖
1 + 𝑐𝜆𝑖

𝑐𝜆𝑗

1 + 𝑐𝜆𝑗
 

•    As 𝑐 → 0 ⟹  𝜌𝑁𝑖,𝑁𝑗
→ 0         

• weak, or absent, contagious 
environment 

 
• As 𝑐 → ∞   ⟹     𝜌𝑁𝑖,𝑁𝑗

→ 1     

• a strong contagious 
environment 
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Negative Binomial Frequency 

If   𝑁𝒊~𝑵𝒆𝒈𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜆𝑖 ,  𝛾𝑖    then define    𝑁𝒊|𝑪~𝑁𝑒𝑔𝐵𝑖𝑛 𝑪𝜆𝒊, 𝛾𝒊  
 

where:   𝐶~𝐷𝑖𝑠𝑡  𝐸 𝐶 = 1, 𝑉𝑎𝑟 𝐶 = 𝑐      and    𝜆𝑖 = mean    𝛾𝑖 = dispersion parmeter  

𝜌𝑁𝑖,𝑁𝑗
=

𝑐𝜆𝑖
1 + 𝜆𝑖 𝑐 + 𝑐𝛾𝑖 + 𝛾𝑖

𝑐𝜆𝑗

1 + 𝜆𝑗 𝑐 + 𝑐𝛾𝑗 + 𝛾𝑗
 

•  As 𝑐 → 0 ⟹  𝜌𝑁𝑖,𝑁𝑗
→ 0         

• weak, or absent, contagious 
environment 
 

• As 𝑐 → ∞ ⟹   𝜌𝑁𝑖,𝑁𝑗
→

1

1+𝛾1

1

1+𝛾2
  

 

• Strong contagious environment  

For 1 ≤ 𝑖, 𝑗 ≤ 𝐾, and 𝑖 ≠ 𝑗, the correlation between 𝑁𝑖 , 𝑁𝑗  is: 
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Binomial Frequency 

• Denote the best-fitting Binomial distributions to each of the 𝐾 lines, by:  
 

• 𝑁 𝑖~𝑩𝒊𝒏(𝑛 𝑖 , 𝑝 𝑖)   for 1 ≤ 𝑖 ≤ 𝐾 
 

• Let:  𝑝 ∗ = max 𝑝 1, 𝑝 2, … , 𝑝 𝑛  

To simulate Claim counts from the line: 
 
 

• Adjust the parameter, 𝑝, of each distribution, by the constant ratio:  𝑝 𝑖 𝑝 ∗  
 

          where        𝑝~𝐵𝑒𝑡𝑎 𝛼 =
1

𝑐
, 𝛽 =

1

𝑐

1−𝑝 ∗

𝑝 ∗
 

 

Hence: 

𝑁𝑖|𝑝 ~𝐵𝑖𝑛 𝑛 𝑖 ,
𝑝 𝑖
𝑝 ∗

𝑝   

• 𝐸 𝑁𝑖 = 𝐸𝑝 𝐸𝑁𝑖
(𝑁𝑖  | 𝑝) = 𝑛 𝑖 ∙ 𝑝 𝑖         (the mean of the best-fitting Binomial distribution, to that line) 

𝑉𝑎𝑟 𝑁 =  
𝑛 𝑖𝑝 𝑖 1 − 𝑝 𝑖 + 𝑐𝑝 ∗ 𝑛 𝑖𝑝 𝑖 1 −

𝑝 𝑖
𝑝 ∗

+ 𝑛 𝑖
2 𝑝 𝑖

2 1
𝑝 ∗

− 1

1 + 𝑐𝑝 ∗
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Binomial Frequency: Variance 

𝑉𝑎𝑟 𝑁 =  
𝑛 𝑖𝑝 𝑖 1 − 𝑝 𝑖 + 𝑐𝑝 ∗ 𝑛 𝑖𝑝 𝑖 1 −

𝑝 𝑖
𝑝 ∗

+ 𝑛 𝑖
2 𝑝 𝑖

2 1
𝑝 ∗

− 1

1 + 𝑐𝑝 ∗
 

 

• 𝑐 → 0 ⟹  𝑉𝑎𝑟 𝑁𝑖 → 𝑛 𝑖𝑝 𝑖 1 − 𝑝 𝑖            (variance of best-fitting Binomial, to business line 𝑖) 
 

• 𝑉𝑎𝑟 𝑁𝑖  is an increasing function of 𝑐. 
 

• 𝑐 → ∞ ⟹  𝑉𝑎𝑟 𝑁𝑖 → 𝑛 𝑖𝑝 𝑖 1 −
𝑝 𝑖

𝑝 ∗
+ 𝑛 𝑖

2 𝑝 𝑖
2 1

𝑝 ∗
− 1  

Note: 
• If   𝑝 𝑖 = 𝑝 ∗, for line 𝑖: 

 

• 𝑐 → ∞ ⟹  𝑉𝑎𝑟 𝑁𝑖 → 𝑛 𝑖𝑝 𝑖 0 + 𝑛 𝑖
2 𝑝 𝑖

2 1

𝑝 𝑖
− 1 = 𝑛 𝑖

2𝑝 𝑖 1 − 𝑝 𝑖 > 𝑛 𝑖𝑝 𝑖 1 − 𝑝 𝑖  

 
 

Several observations can be made from this expression: 
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Binomial Frequency: Correlation 

For 1 ≤ 𝑖, 𝑗 ≤ 𝐾, and 𝑖 ≠ 𝑗:  

Where: 𝜎𝑖 = 
𝑛 𝑖𝑝 𝑖 1 − 𝑝 𝑖 + 𝑐𝑝 ∗ 𝑛 𝑖𝑝 𝑖 1 −

𝑝 𝑖
𝑝 ∗

+ 𝑛 𝑖
2 𝑝 𝑖

2 1
𝑝 ∗

− 1

1 + 𝑐𝑝 ∗
 𝜌𝑁1,𝑁2

=
𝑛 𝑖𝑝 𝑖𝑛 𝑗𝑝 𝑗

𝑐(1 − 𝑝 ∗)
1 + 𝑐𝑝 ∗

𝜎𝑖𝜎𝑗
 

Observations: 
 

• 𝑐 → 0  ⟹   𝜌𝑁1,𝑁2
→ 0. 

 

• 𝜌𝑁1,𝑁2
 in an increasing function of 𝑐. 

 

•    𝑐 → ∞  ⟹  𝜌𝑁𝑖,𝑁𝑗
→

1

1+
𝑝 ∗− 𝑝 𝑖

𝑛 𝑖𝑝 𝑖 1−𝑝 ∗
1+

𝑝 ∗−𝑝 𝑗

𝑛 𝑗𝑝 𝑗 1−𝑝 ∗
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Binomial: Correlation vs. c  (per level of Binomial parameters, and p*) 

Observations: 
 

• For a given value of 𝑝 ∗ < 1: 
𝑝 𝑖 and 𝑝 𝑗 larger ⟹  

      ⟹  higher correlation. 
 

• For fixed values of 𝑝 𝑖 and 𝑝 𝑗, s.t. 

min 𝑝 𝑖 , 𝑝 𝑗 < 𝑝 ∗: 

• higher 𝑝 ∗ ⟹ lower correlation. 
 

• As  𝑐 → ∞ :  
 

• If   𝑝 𝑖 = 𝑝 𝑗 = 𝑝 ∗ < 1    ⟹ 𝜌𝑁𝑖,𝑁𝑗
→ 1 

 

• If  min 𝑝 𝑖 , 𝑝 𝑗 < 𝑝 ∗, then   𝑝 ∗ → 1 ⟹   𝜌𝑁𝑖,𝑁𝑗
→ 0 

 

Recall: 
As: 𝑐 → ∞  ⟹  

     𝜌𝑁𝑖,𝑁𝑗
→

1

1+
𝑝 ∗− 𝑝 𝑖

𝑛 𝑖𝑝 𝑖 1−𝑝 ∗
1+

𝑝 ∗−𝑝 𝑗

𝑛 𝑗𝑝 𝑗 1−𝑝 ∗
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Summary: Frequency Contagion 

• The introduction of Contagion preserves the mean of the frequency distribution: 
 

• 𝐸 𝑁𝑖 = 𝐸𝐶 𝐸𝑁𝑖
(𝑁𝑖  | 𝐶) = 𝜆𝒊   for   𝑁𝒊~𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝜆𝒊   or 𝑁𝒊~𝑵𝒆𝒈𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜆𝑖 , 𝛾𝑖   

 
• However,  the variance of the claim count RV, will be increased: 

 

• 𝑉𝑎𝑟 𝑁𝑖 = 𝑉𝑎𝑟𝐶 𝐸 𝑁𝑖 𝐶 + 𝐸𝐶 𝑉𝑎𝑟 𝑁𝑖 𝐶 = 𝜆𝑖(1 + 𝑐 ∙ 𝜆𝑖)         𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖   
 

• 𝑉𝑎𝑟 𝑁 = 𝜆 1 + 𝜆 𝑐 + 𝑐𝛾 + 𝛾                                                𝑁𝑖~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜆𝑖 , 𝛾𝑖   
 

• 𝑉𝑎𝑟 𝑁 =  
𝑛 𝑖𝑝 𝑖 1−𝑝 𝑖 +𝑐𝑝 ∗ 𝑛 𝑖𝑝 𝑖 1−

𝑝 𝑖
𝑝 ∗

+ 𝑛 𝑖
2 𝑝 𝑖

2 1

𝑝 ∗
−1

1+𝑐𝑝 ∗
           𝑁 𝑖~𝐵𝑖𝑛 𝑛 𝑖 , 𝑝 𝑖   

 
• The “frequency contagion 𝑅𝑉”, 𝐶, can follow any distributional form. 

 

• The only restrictions are: 
 

1. The distribution must have positive support 
 

2. The mean must be 1:   𝐸 𝐶 = 1 
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Summary: Frequency Contagion, cont.….. 

 

• The correlation only depends on: (Regardless of which frequency distribution is used) 
 

1. Parameters of the Frequency distribution, and 
 

2. “Contagion parameter”, 𝑐. 
 

  Ex:  Poisson:  𝜌𝑁𝑖,𝑁𝑗
=

𝑐𝜆𝑖

1+𝑐𝜆𝑖

𝑐𝜆𝑗

1+𝑐𝜆𝑗
 

 
 

• Even though the same contagion parameter, 𝑐, is used, across all lines-of-business: 
 

• 𝜌𝑁𝑖,𝑁𝑗
 will NOT equal  𝜌𝑁𝑚,𝑁𝑛

 , unless  𝜆𝑖 , 𝜆𝑗 = 𝜆𝑚, 𝜆𝑛  
 

• Hence, only one parameter, 𝑐, will induce a whole, non-constant, correlation matrix. 
 

• The induced correlation matrix will be “automatically” determined, by: 
• The marginal distribution, of each line. 
• The value of the contagion parameter, 𝑐. 



Proposed Aggregate Common-Shock/ 
Contagion model 
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Proposed Aggregate Contagion model 

Let:  𝐹𝑟𝑒𝑞𝐷𝑖𝑠𝑡 𝜽𝑘|𝐶  be the best-fitting distribution to the claim count data, for the 𝑘th-
line:  

• 𝑁𝑘
∗|𝐶~𝐹𝑟𝑒𝑞𝐷𝑖𝑠𝑡 𝜽𝑘|𝐶      where     𝐶~𝐷𝑖𝑠𝑡  𝐸 𝐶 = 1, 𝑉𝑎𝑟 𝐶 = 𝑐  

 

Let  𝐷𝑖𝑠𝑡𝑋𝑘
(𝜇, 𝜎𝑋𝑘

2 )  be the best-fitting distribution to the loss size data , for the 𝑘th-line: 
 

Assume that 𝑋𝑘 can be decomposed into the product of two RV; 𝜷𝒁𝒌, s.t.: 
 

 

𝑉𝑎𝑟 𝑋𝑘 ≈ 𝑉𝑎𝑟 𝛽𝑍𝑘  
 

 

 

• 𝑋𝑘~ 𝐷𝑖𝑠𝑡𝑘 𝐸 𝑋𝑘 = 𝜇𝑘,  𝑉𝑎𝑟 𝑋𝑘 = 𝜎𝑥𝑘
2   is the observed, empirical, claim size data. 

 

 

• 𝛽 is the severity contagion RV, s.t.  𝛽~𝐷𝑖𝑠𝑡 𝐸 𝛽 = 1, 𝑉𝑎𝑟 𝛽 = 𝑏   
 

• 𝛽 represents the systematic component of the losses process 𝑋𝑘.   
 

• 𝑍𝑘  the underlying loss RV.  
 

• 𝑍𝑘  represents the idiosyncratic component of the losses process 𝑋𝑘. 
 

• i.e. the true, underlying, loss process.  
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Aggregate Contagion model - requirements 

Requirements for the proposed Aggregate contagion model: 
 

 

1. 𝛽 be independent of 𝑍𝑘, and  
 

2. 𝐸 𝑍𝑘 = 𝜇𝑧𝑘 = 𝜇𝑘= 𝐸 𝑋𝑘  
 

3. The distribution of 𝛽 must have positive support 
 

4. The mean must be 1:   𝐸 𝛽 = 1 

 
These conditions ensure that: 

 

• 𝐸 𝛽𝑍𝑘 = 𝐸 𝛽 𝐸 𝑍𝑘 = 1 ⋅ 𝜇𝑧𝑘 = 𝜇𝑘 = 𝐸 𝑍𝑘  
 

• 𝑉𝑎𝑟 𝛽𝑍𝑘 = 𝜎𝑧𝑘
2 + 𝑏 𝜇𝑘

2 + 𝜎𝑧𝑘
2  

 
In summary, the Severity component of the proposed Aggregate Contagion model is s.t.:  

     𝜷𝒁𝒌    where:   
𝑍𝑘~𝑅𝑎𝑛𝐷𝑖𝑠𝑡𝑘  𝐸 𝑍𝑘 = 𝜇𝑘,  𝑉𝑎𝑟 𝑍𝑘 = 𝜎𝑧𝑘

2

         𝛽~𝑅𝑎𝑛𝐷𝑖𝑠𝑡 𝐸 𝛽 = 1,  𝑉𝑎𝑟 𝛽 = 𝑏 , with 𝑏 ≥ 0
 

 

• such that:       𝐸 𝑍𝑘 = 𝜇𝑧𝑘 = 𝜇𝑘= 𝐸 𝑋𝑘     and    𝑉𝑎𝑟 𝑍𝑘 = 𝜎𝑧𝑘
2 ≤ 𝜎𝑥𝑘

2 = 𝑉𝑎𝑟 𝑋𝑘  
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Aggregate Contagion model - description 

The proposed severity contagion model is consistent with the common shock/ 
contagion modeling paradigm, since: 

• In the absence of a contagious environment, it should be inferred that; 𝜎𝑧𝑘
2 ≈ 𝜎𝑥𝑘

2 , and hence: 
 

 

• 𝜎𝑥𝑘
2 = 𝑉𝑎𝑟 𝑋𝑘 ≈  𝑉𝑎𝑟 𝛽𝑍𝑘 = 𝜎𝑧𝑘

2 + 𝑏 𝜇𝑘
2 + 𝜎𝑧𝑘

2 , which implies that; 𝑏 ≈ 0. 

 
• Conversely, in the presence of a strong contagious environment, it should be inferred that: 

 

• 𝜎𝑧𝑘
2 ≪ 𝜎𝑥𝑘

2  , which, by the same argument, implies that 𝑉𝑎𝑟 𝛽 ≫ 0, or 𝑏 ≫ 0.  

 
Conversely, under the same assumption that: 𝑉𝑎𝑟 𝑋𝑘 ≈ 𝑉𝑎𝑟 𝛽𝑍𝑘 , we have that: 
 

• 𝑏 ≈ 0 implies that 𝜎𝑧𝑘
2 =  𝑉𝑎𝑟 𝛽𝑍𝑘 ≈ 𝑉𝑎𝑟 𝑋𝑘 = 𝜎𝑥𝑘

2 , which implies a weak contagious environment, and: 
 

• 𝑏 ≫ 0 ⟹  𝜎𝑥𝑘
2 = 𝑉𝑎𝑟 𝑋𝑘 ≈  𝑉𝑎𝑟 𝛽𝑍𝑘 = 𝜎𝑧𝑘

2 + 𝑏 𝜇𝑘
2 + 𝜎𝑧𝑘

2 ≫ 𝜎𝑧𝑘
2  ⟹   strong contagious environment. 



CONFIDENTIAL 

Calibration proposed Contagion model 

However, the proposed aggregate contagion model will only be useful if:  
 

1. Var 𝑋𝑘  can faithfully be modeled by the product of 𝛽, and 𝑍𝑘: 
 

• i.e.:   𝑉𝑎𝑟 𝑋𝑘 ≈ 𝑉𝑎𝑟 𝛽𝑍𝑘  
 

2. A calibration scheme exist, which is able to effectively isolate the contribution of 
𝛽, and 𝑍𝑘, to the variation of the data. 

We investigate these assumptions in the following case studies. 

The proposed represents a refinement to the current Severity contagion 
approach, in the literature: 𝛽𝑿𝒌.  
 

• By fitting 𝑿𝒌 to the empirical data, and then multiplying by 𝛽:   
 

• 𝑉𝑎𝑟 𝛽𝑋𝑘 = 𝜎𝑥𝑘
2 + 𝑏 𝜇𝑘

2 + 𝜎𝑥𝑘
2 > 𝜎𝑥𝑘

2 ≈ 𝑉𝑎𝑟 𝑑𝑎𝑡𝑎  
 

• i.e.:  𝛽𝑿𝒌 will over-estimate the variance of the observed, per-claim, loss size data. 
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Case Study #1: Property Natural Peril Severity Data 

We first investigate the assumptions for a single line-of-business: 
 

Data: 670 claims between years 2003 and 2012 
 

• Property Natural Peril (severe convective storm) 
• For a single company. 
• Occurrence basis. 
• Losses over 10-years: 2003 – 2012 

• Loss sizes are in units of $1,000. 
 

Frequency calibration: 
• We use a Poisson distribution for the claim counts. 

 

• The parameter value 𝜆 is set equal to the empirical average annual claim counts: 
 

•  𝜆 = 𝑋 = 67. 

• Solve:   𝑉𝑎𝑟(𝑁) = 𝜆(1 + 𝑐 ∙ 𝜆) for 𝑐: 
 

• 𝑐 =
𝑉𝑎𝑟 𝑁

𝜆2
−

1

𝜆
=≈ 0.115 

 

• 𝑉𝑎𝑟 𝑁  = sample variance    and      𝜆 = 𝑋 = 67 
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Severity calibration: 
 

• Using the per-claim severity data, over the full 10-years: 
 

• The best-fitting distribution to the per-claim severity, 𝑿,  is: 
 

• Pareto distribution, with  
• 𝛼𝑀𝐿𝐸 =  𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 2.982 , and  

 

• 𝜃𝑀𝐿𝐸 =  𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 33,468 
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Case Study #1: Property Natural Peril Severity Data 

 

But ….. we need the distribution of the pure, underlying, loss process; 𝒁 
 

Let: 

𝑆∗ =  𝛽𝑍𝑖

𝑁∗

𝑖=1

 

 
 
 

⟹   𝑉𝑎𝑟 𝑆∗ = 𝑉𝑎𝑟 𝑍𝑖 𝐸  𝑁∗ + 𝐸 𝑍𝑖
2 𝑉𝑎𝑟  𝑁∗ + 𝑏 ∙ 𝑉𝑎𝑟 𝑍𝑖 𝐸  𝑁∗ + 𝐸 𝑍𝑖

2𝐸 𝑁∗2  
 
 
 

Note: This equation incorporates both frequency and severity contagion, and does not depend on the 
distributional form of the claim count RV (Poisson, Negative Binomial, or Binomial).  

 

 

And: 
• 𝐸  𝑁∗ = 𝜆 

 
 

• 𝑉𝑎𝑟  𝑁∗ = 𝜆(1 + 𝑐 ∙ 𝜆) 
 
 

 

Hence: 
 
 

𝑉𝑎𝑟 𝑆∗ = 𝜎𝑧
2𝜆 + 𝜇𝑧

2𝜆 1 + 𝑐𝜆 + 𝑏 ∙ 𝜎𝑧
2𝜆 + 𝜇𝑧

2 𝜆 1 + 𝑐𝜆) + 𝜆2  = 𝜆 1 + 𝑏 𝜇𝑧
2 + 𝜎𝑧

2  + 𝜆2𝜇𝑧
2 𝑏 + 𝑐 + 𝑏𝑐  

⟹   𝑏 =
𝑉𝑎𝑟 𝑆∗ − 𝜆𝜎𝑧

2 − 𝜆𝑏 𝜇𝑧
2 + 𝜎𝑧

2 − 𝜆𝜇𝑧
2 − 𝜆2𝜇𝑧

2𝑐

𝜆2𝜇𝑧
2 1 + 𝑐
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Calibration of the pure, underlying, loss process; 𝒁 
 

 

Set:  𝑉𝑎𝑟 𝑆∗ = 𝑉𝑎𝑟 𝑆∗ = empirical variance of the annual aggregate losses:  
 

⟹   𝑏 =
𝑉𝑎𝑟 𝑆∗ − 𝜆𝜎𝑧

2 − 𝜆𝑏 𝜇𝑧
2 + 𝜎𝑧

2 − 𝜆𝜇𝑧
2 − 𝜆2𝜇𝑧

2𝑐

𝜆2𝜇𝑧
2 1 + 𝑐

  

 

And use the following values (all based on the sample): 
 

• The mean of the Poisson frequency distribution (𝜆 = 67) 

• The modeled mean of the per-claim severity distribution (𝜇𝑧 = 17,842) 

• The modeled variance of the per-claim severity (𝑉𝑎𝑟 𝛽𝑍 = 𝜎𝑥
2 = 32,3292) 

• The empirical variance of the annual aggregate losses (𝑉𝑎𝑟 𝑆∗ = 697,2452) 

• The frequency contagion parameter (𝑐 = 0.115 ) 
 

⟹         𝑏 =
𝑉𝑎𝑟 𝑆∗ − 𝜆 ∙ 𝑉𝑎𝑟 𝛽𝑍 − 𝜆𝜇𝑧

2 − 𝜆2𝜇𝑧
2𝑐

𝜆2𝜇𝑧
2 1 + 𝑐

  ≈   𝟎. 𝟏𝟑 

And: 

⟹       𝜎𝒛
2 = 

𝑉𝑎𝑟 𝛽𝑍 − 𝑏𝜇𝑧
2

1 + 𝑏
= 29,6342 
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Finally, using: 
 

• 𝜇𝑧 = 17,842 
• 𝜎𝒛

2 = 29,6342 
 

The distribution of the pure, underlying, loss process; 𝒁~𝑃𝑎𝑟𝑒𝑡𝑜 𝛼𝑧, 𝜃𝑧  are 

determined to be: 
 

• 𝛼𝑧 = 3.137, and  
 

• 𝜃𝑧 = 38,133 

 
Now, we perform a simulation study of the Aggregate Annual Layered Losses 

 

 

𝑆∗ =  𝛽𝑍𝑖

𝑁∗

𝑖=1

 

 

Using the  parameter values calibrated from the actual, empirical, data: 
 
 

• 𝑵|𝑪~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑪 ⋅ 𝟔𝟕     and   𝑪~𝐺𝑎𝑚𝑚𝑎  𝐸 𝐶 = 1, 𝑉𝑎𝑟 𝐶 = 𝟎. 𝟏𝟏𝟓  
 

• 𝑍𝑖~𝑃𝑎𝑟𝑒𝑡𝑜 𝟑. 𝟏𝟑𝟕, 𝟑𝟖, 𝟏𝟑𝟑      and      𝛽~𝐺𝑎𝑚𝑚𝑎 𝐸 𝛽 = 1,  𝑉𝑎𝑟 𝛽 = 𝟎. 𝟏𝟑  
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We use the following Layers, of the AAL: 
 

𝐿𝑎𝑦𝑒𝑟1:  𝟎 – 𝟕. 𝟓𝐌
        𝐿𝑎𝑦𝑒𝑟2: 𝟕. 𝟓𝑴− 𝟐𝟎𝑴 
      𝐿𝑎𝑦𝑒𝑟3: 𝟐𝟎𝑴− 𝟒𝟓𝑴
      𝐿𝑎𝑦𝑒𝑟4: 𝟒𝟓𝑴− 𝟕𝟎𝑴

         𝐿𝑎𝑦𝑒𝑟5: 𝟕𝟎𝑴− 𝟏𝟎𝟎𝑴
            𝐿𝑎𝑦𝑒𝑟6: 𝟏𝟎𝟎𝑴− 𝟐𝟎𝟎𝑴

  

 

Simulation procedure: 
1. For each iteration of the simulation, generate 10 years of Aggregate Annual Losses under both: 

• The Traditional method 
• The Contagion method. 

 

2. For each of the pre-defined Loss Layers (above) calculate the Annual Aggregate losses within each 
layer. 
 

3. For each layer, calculate the 𝐶𝑉 of the Aggregate Annual losses, over the 10-years. 
 
Repeat 100,000 times. 
 

At this point, we have 100,000  10-year 𝐶𝑉 estimates, for each layer 
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2. For each of the pre-defined Loss Layers (above) calculate the Annual Aggregate losses within each 
layer. 
 

3. For each layer, calculate the 𝐶𝑉 of the Aggregate Annual losses, over the 10-years. 
 
Repeat 100,000 times. 
 

At this point, we have 100,000  10-year 𝐶𝑉 estimates, for each layer 



CONFIDENTIAL 

Case Study #1: Results 
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        Traditional Collective Risk model       Proposed Aggregate Contagion method  
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Case Study #2: XYZ Insurance GL Claims Data 

Provided loss data on: 

– LOB: GL claims on transaction-level 

– Losses over 5-years: 2009 – 2013 

– Occurrence basis, Losses recorded after policy-limits and deductibles 
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        Traditional Method                                             Contagion method  
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Case Study: Summary 

 Traditional Collective Risk modeling 

– No Frequency Correlation available 

– No Severity Correlation available within the LOBs  

– Produces flawed estimates of the Variation of Aggregate Annual claims. 

• Underestimates the Variation. 
 

 Traditional Collective Risk underestimates: 

– Volatility of aggregate losses. 

– Volatility of aggregate losses within XOL layers. 

– Risk measure in terms of Spectral risk, TVaR or VaR.  
 

 Effect of Traditional Collective Risk Model: 

– May underestimate Capital Requirements. 

– May underprice reinsurance contracts.  
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Contagion Model: Summary 

 Contagion Model 

– Induce frequency correlation using frequency contagion 

– Induce severity correlation through severity contagion 

 Easy to understand through implied correlation and volatility 

 Easy to implement within high performance simulation 

 Represent the state-of-the-art in correlation treatment (Meta Risk, 
ReMetrica) 

 Have demonstrated that contagion exists using real life data.  

 Have showed that the contagion can better estimate: 

– Volatility of aggregate losses 

– Risk measure in terms of Spectral risk, TVaR or VaR  

– Expected loss of XOL layers 
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