Variations of the linear logarithm hazard transform for modelling cohort mortality rates

Cary Tsai and Qian Wang

Department of Statistics and Actuarial Science Simon Fraser University, Canada

The 49th Actuarial Research Conference University of Califonia - Santa Barbara July 14-16, 2014

< 回 > < 回 > < 回 >

Introduction •	Models and assumptions	Mortality projection	Numerical results 000000 000000 00000
Motivations			

Motivations of developing effective mortality models

- Modeling the changes and dynamics of mortality rates is critical to the solvency of life insurers and social benefit programs
- Mortality is also one of the key factors in pricing and reserving of life insurance and annuity products
- Failing in capturing the downward trends in mortality rates would under-price/-reserve annuity products and then expose annuity providers to the risk of financial insolvency

Introduction	Models and assumptions	Mortality projection	Numerical results
0	• o 000	0000000 00000	000000 000000 00000

Mortality rates

Mortality rates and sequences

- Three ways of expressing mortality rates
 - Central death rate m_{x,t}
 - Death probability q_{x,t}
 - Force of mortality $\mu_{x,t}$
- ► A period mortality sequence u_{x0,t0}, n of length n starting at age x₀ in year t₀ is defined as

$$u_{x_0,t_0,n} = \{u_{x_0,t_0}, u_{x_0+1,t_0}, \ldots, u_{x_0+n-1,t_0}\}, u \in \{m,q,\mu\}.$$

• A cohort mortality sequence $u_{x_0,t_0,n}^c$ of length *n* starting at age x_0 in year t_0 is defined as

$$u_{x_0,t_0,n}^c = \{u_{x_0,t_0}, u_{x_0+1,t_0+1}, \ldots, u_{x_0+n-1,t_0+n-1}\}, u \in \{m,q,\mu\}.$$

Introduction	Models and assumptions	Mortality projection	Numerical results
0	0 000	0000000 00000	000000 000000 00000

Mortality rates

Mortality rate sequences

Figure: Illustration of $q_{x_0,t_0,n}, q_{x_0,t_0+1,n}^c$ and $q_{x_0,t_0+m,n}^c$

Age\Year	t ₀	$t_0 + 1$		$t_0 + m$	t_0+m+1	 $t_0 + n$		$t_0+m+n-1$
<i>x</i> ₀	q_{x_0,t_0}	q_{x_0,t_0+1}		q_{x_0,t_0+m}				
$x_0 + 1$	q_{x_0+1,t_0}		•.			$q_{x_0,t_0+\eta}^c$	n,n	
$x_0 + 2$	q_{x_0+2,t_0}	q	,t ₀ ,t ₀ +	+1,n ··				1
:		x_0, t_0, n						
$x_0 + n - 1$	q_{x_0+n-1,t_0}					q_{x_0+n-1,t_0+n}		$q_{x_0+n-1,t_0+m+n-1}$

Variations of the LLHT for modelling cohort mortality rates

Simon Fraser University

Introduction O	Models and assumptions ○○ ●○○	Mortality projection	Numerical results 000000 000000 00000
The models			

The Lee-Carter model

 $\ln(m_{x,t}) = a_x + b_x k_t + \epsilon_{x,t}$

- a_x and b_x are the age-specific constants, $x = x_0, \ldots, x_0 + n 1$;
- k_t is the time-varying index, $t = t_0 + 1, \ldots, t_0 + m$;
- ▶ for each *x*, error terms $\epsilon_{x,t} \stackrel{i.i.d}{\sim} N(0, \sigma_{\epsilon_x}^2), t = t_0 + 1, \dots, t_0 + m;$
- two constraints: $\sum_t k_t = 0$ and $\sum_x b_x = 1$.

The parameters are estimated by SVD (singular value decomposition); or alternatively,

- $\sum_{t} k_t = 0 \Rightarrow \hat{a}_x = \frac{1}{m} \sum_{t=t_0+1}^{t_0+m} \ln(m_{x,t}),$
- $\sum_{x} b_{x} = 1 \Rightarrow \hat{k}_{t} = \sum_{x=x_{0}}^{x_{0}+n-1} [\ln(m_{x,t}) \hat{a}_{x}],$
- ▶ \hat{b}_x can be computed by regressing $[\ln(m_{x,t}) \hat{a}_x]$ on \hat{k}_t without the constant term for each age *x*.

Introduction	Models and assumptions	Mortality projection	Numerical results
0		0000000 00000	000000 000000 00000

The models

The CBD model

$$logit(q_{x,t}) = ln(\frac{q_{x,t}}{1-q_{x,t}}) = \kappa_t^1 + \kappa_t^2(x-\bar{x}) + \epsilon_{x,t}$$

- $\bar{x} = \frac{1}{n} \sum_{x=x_0}^{x_0+n-1} x;$
- ▶ κ_t^1 and κ_t^2 are the time-varying parameters, $t = t_0 + 1, ..., t_0 + m$, and can be obtained by the least square method;
- ▶ for each *x*, error terms $\epsilon_{x,t} \stackrel{i.i.d}{\sim} N(0, \sigma_{\epsilon_x}^2), t = t_0 + 1, \dots, t_0 + m$.

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 00	0000000 00000	000000 000000 00000

The models

Data area for the Lee-Carter and CBD models

- data area: rectangle \Rightarrow parallelogram
- ► *m* cohort mortality sequences q^c_{x0,t0+1,n},..., q^c_{x0,t0+m,n} are used to fit the Lee-Carter and CBD models and estimate parameters.

A (10) > A (10) > A (10)

Introduction O	Models and assumptions OO OOO	Mortality projection	Numerical results 000000 000000 00000
Deterministic			

The Lee-Carter model

• Modelling the time factor k_t with a random walk with drift process, $\hat{k}_t = \hat{k}_{t-1} + c + e_t$, where c is estimated by

$$\hat{c} = \frac{1}{m-1} \sum_{t=t_0+1}^{t_0+m-1} (\hat{k}_{t+1} - \hat{k}_t).$$

• The projected $m_{x,t_0+m+\tau}$ is obtained by

$$\ln(\hat{m}_{x,t_0+m+\tau}) = \hat{a}_x + \hat{b}_x \times \tilde{\hat{k}}_{t_0+m+\tau},$$

where

$$ilde{k}_{t_0+m+ au} = \hat{k}_{t_0+m} + au imes \hat{c}.$$

Variations of the LLHT for modelling cohort mortality rates

Simon Fraser University

< 同 ト く ヨ ト く ヨ ト

Introduction O	Models and assumptions OO OOO	Mortality projection	Numerical results 000000 000000 00000
Deterministic			

The CBD model

- ▶ Assuming random walk with drift for κ_t , $\hat{\kappa}_t = \hat{\kappa}_{t-1} + c + V \cdot Z_t$
 - $\hat{\kappa}_t = (\hat{\kappa}_t^1, \hat{\kappa}_t^2)'$ and $c = (c_1, c_2)';$
 - V is the variance-covariance matrix for κ ;
 - > Z_t is the two-dimension standard normal distribution.
- Similar to the Lee-Carter model, c is estimated as

$$\hat{c} = rac{1}{m-1} \sum_{t=t_0+1}^{t_0+m-1} (\hat{\kappa}_{t+1} - \hat{\kappa}_t).$$

• The projected $q_{x,t_0+m+\tau}$ is obtained by

$$logit(\hat{q}_{x,t_0+m+\tau}) = \tilde{\hat{\kappa}}^1_{t_0+m+\tau} + \tilde{\hat{\kappa}}^2_{t_0+m+\tau}(x-\bar{x}),$$

where

$$\tilde{\hat{\kappa}}_{t_0+m+\tau}^i = \hat{\kappa}_{t_0+m}^i + \tau \times \hat{\mathbf{C}}_i, \quad i = 1, 2.$$

< 回 > < 回 > < 回 >

Introduction O	Models and assumptions OO OOO	Mortality projection	Numerical results

A variation of the LLHT model

For any year $t + t_0$, the LLHT model is expressed as follows:

$$\ln(\mu_{x_0,t_0+t,n}^c) = \alpha_t \times \ln(\mu_{x_0,t_0,n}) + \beta_t + \epsilon_t.$$

Regressing $\ln(\mu_{x_0,t_0+t,n}^c)$ on $\ln(\mu_{x_0,t_0,n})$ for each $t = 1, \ldots, m$ yields $\{(\hat{\alpha}_t, \hat{\beta}_t), t = 1, \ldots, m\}$ where $\epsilon_t = \{\epsilon_{x_0,t}, \ldots, \epsilon_{x_0+n-1,t}\} \stackrel{i.i.d}{\sim} N(0, \sigma_{\epsilon_t}^2)$.

Under the constant force of mortality assumption,

$$q_{x,t} = 1 - e^{-\int_0^1 \mu_{x,t}(s)ds} = 1 - e^{-\mu_{x,t}}$$

and

$$m_{x,t} = \frac{q_{x,t}}{\int_0^1 s \rho_{x,t} ds} = \frac{q_{x,t}}{\int_0^1 \rho_{x,t}^s ds} = -\ln(\rho_{x,t}) = \mu_{x,t}.$$

イロト イポト イヨト イヨト

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000	000000 000000 00000

Mortality rate sequence

Figure: Fitting $\ln(\mu_{x_0,t_0+t,n}^c)$ with $\ln(\mu_{x_0,t_0,n}), t = 1..., m$

Age\Year	t ₀	$t_0 + 1$		$t_0 + m$	t_0+m+1	 $t_0 + n$		$t_0+m+n-1$
<i>x</i> ₀	q_{x_0,t_0}	q_{x_0,t_0+1}		q_{x_0,t_0+m}				
$x_0 + 1$	q_{x_0+1,t_0}		•.			$q_{x_0,t_0+\eta}^c$	n,n	
$x_0 + 2$	q_{x_0+2,t_0}	q	,t ₀ ,t ₀ +	+1,n ··				1
:	<i>q</i> :	x_0, t_0, n						
$x_0 + n - 1$	q_{x_0+n-1,t_0}					q_{x_0+n-1,t_0+n}	2	$q_{x_0+n-1,t_0+m+n-1}$

Variations of the LLHT for modelling cohort mortality rates

Simon Fraser University

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: The fitted values $\hat{\beta}_t$ for the UK males from regressing $ln(\mu_{45,1956,35}^c), \ldots, ln(\mu_{45,1975,35}^c)$ on $ln(\mu_{45,1955,35})$

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	00000000	000000 000000 00000

Figure: The fitted values $\hat{\alpha}_t$ for the UK males from regressing $ln(\mu_{45,1956,35}^c), \ldots, ln(\mu_{45,1975,35}^c)$ on $ln(\mu_{45,1955,35})$

Variations of the LLHT for modelling cohort mortality rates

Introduction O	Models and assumptions 00 000	Mortality projection ○○○○○●○ ○○○○○	Numerical results 000000 000000 00000

The LLHT-LR model

Assume that

$$\hat{\alpha}_t = \mathbf{a} \times t + \mathbf{b} + \mathbf{e}_{\alpha,t}, t = 1, \dots, m$$

and

$$\hat{\beta}_t = \boldsymbol{c} \times \boldsymbol{t} + \boldsymbol{d} + \boldsymbol{e}_{\beta,t}, t = 1, \dots, m.$$

- $e_{\gamma,t}$, t = 1, ..., m, are error terms, and $e_{\gamma,t} \stackrel{i.i.d}{\sim} N(0, \sigma_{e_{\gamma}}^2), \gamma = \{\alpha, \beta\}.$
- a, b, c and d are all constants and can be estimated by least square error method

Future mortality rate can be predicted by

$$\ln(\hat{\mu}_{x,t_0+m+\tau}^{c}) = \tilde{\hat{\alpha}}_{m+\tau} \times \ln(\mu_{x,t_0}) + \tilde{\hat{\beta}}_{m+\tau}.$$

where $\tilde{\hat{lpha}}_{m+ au} = \hat{a} \times (m+ au) + \hat{b}$ and $\tilde{\hat{eta}}_{m+ au} = \hat{c} \times (m+ au) + \hat{d}$

向下 イヨト イヨト

Introduction O	Models and assumptions OO OOO	Mortality projection	Numerical results

The LLHT-RW model

Assume that

$$\hat{\alpha}_t = \hat{\alpha}_{t-1} + f + \boldsymbol{e}_{\alpha,t}$$

and

$$\hat{\beta}_t = \hat{\beta}_{t-1} + \boldsymbol{g} + \boldsymbol{e}_{\beta,t}.$$

 f and g are all constants, and is estimated as parameters by random walk with drift,

• $e_{\gamma,t}$, t = 1, ..., m are error terms, and $e_{\gamma,t} \stackrel{i.i.d}{\sim} N(0, \sigma_{e_{\gamma}}^2)$, $\gamma = \{\alpha, \beta\}$. Future mortality rate can be predicted by

$$\ln(\hat{\mu}_{x,t_0+m+\tau}^{c}) = \tilde{\hat{\alpha}}_{m+\tau} \times \ln(\mu_{x,t_0}) + \tilde{\hat{\beta}}_{m+\tau}.$$

< 回 > < 三 > < 三 >

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

The Lee-Carter model

The variance comes from two sources:

• e_t from k_t

$$\hat{\sigma}_{e}^{2} = \frac{1}{m-2} \sum_{t=t_{0}+1}^{t_{0}+m-1} [\hat{k}_{t+1} - \hat{k}_{t} - \hat{c}]^{2}$$

• $\epsilon_{x,t}$ from the whole model, for each age x

$$\hat{\sigma}_{\epsilon_x}^2 = \frac{1}{m-2} \sum_{t=t_0+1}^{t_0+m} [ln(m_{x,t}) - \hat{a}_x - \hat{b}_x \times \hat{k}_t]^2$$

The estimated variance of the projected $ln(m_{x,t})$ is obtained as follows,

$$\hat{\sigma}^2(\ln(\hat{m}_{x,t_0+m+\tau})) = \hat{b}_x^2 \times \hat{\sigma}_{\hat{k}_{t_0+m+\tau}}^2 + \hat{\sigma}_{\epsilon_x}^2 = \tau \times \hat{b}_x^2 \times \hat{\sigma}_e^2 + \hat{\sigma}_{\epsilon_x}^2,$$

< 回 > < 回 > < 回 >

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000	000000 000000 00000
Stochastic			

The CBD model

The variance comes from two sources:

• errors from κ

$$\hat{\sigma}_{\kappa_t^{(i)}}^2 = \frac{1}{m-2} \sum_{t=t_0+1}^{t_0+m-1} [\hat{\kappa}_{t+1}^{(i)} - \hat{\kappa}_t^{(i)} - \hat{c}_{(i)}]^2, i = \{1,2\}$$

• $\epsilon_{x,t}$ from the whole model, for each age x

$$\hat{\sigma}_{\epsilon_x}^2 = \frac{1}{m-2} \sum_{t=t_0+1}^{t_0+m} [logit(q_{x,t}) - \hat{\kappa}_t^1 - \hat{\kappa}_t^2 \times (x-\bar{x})]^2$$

The variance of the projected $logit(q_{x,t})$ is obtained as follows,

$$\sigma^{2}(\textit{logit}(\hat{q}_{x,t})) = \tau \times \sigma_{\kappa_{t}^{1}}^{2} + \tau \times \sigma_{\kappa_{t}^{2}}^{2} \times (x - \bar{x})^{2} + \sigma_{\epsilon_{x}}^{2}.$$

<回と < 回と < 回>

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	000000000000000000000000000000000000000	000000 000000 00000

The LLHT-based models

- The variance comes from two sources:
 - $\epsilon_{x,t}$, the error term from the whole model
 - errors from estimated intercept and slope parameters
- For $\epsilon_{x,t}$,
 - ▶ at first we assume for each $t \in x_{t,t} \stackrel{i.i.d}{\sim} N(0, \sigma_{\epsilon_t}^2), x = x_0, \dots, x_0 + n 1$.
 - From empirical data, σ²_{εt} does not increase in t, so we assume

$$\epsilon_{x,t} \stackrel{i.i.d}{\sim} N(0,\sigma_{\epsilon}^2), x = x_0, \ldots, x_0 + n - 1, t = t_0 + 1, \ldots, t_0 + m.$$

• $\hat{\sigma}_{\epsilon}^2$ can be estimated by

$$\hat{\sigma}_{\epsilon}^{2} = \frac{\sum_{t=1}^{m} \hat{\sigma}_{\epsilon_{t}}^{2}}{m} = \frac{\sum_{t=1}^{m} \sum_{k=1}^{n} (\ln(\mu_{x_{0}+k-1,t_{0}+t}) - \hat{\alpha}_{t} \times \ln(\mu_{x_{0}+k-1,t_{0}}) - \hat{\beta}_{t})^{2}}{m \times (n-2)}$$

< 回 > < 回 > < 回 >

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	000000	000000 000000 00000

Figure: Q-Q plots of all fitted errors by regressing $ln(\mu_{1956,45,35}^c), \ldots, ln(\mu_{1960,45,35}^c)$ on $ln(\mu_{1955,45,35})$ for the USA population

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	000000 0000	000000 000000 00000

The LLHT-LR/LLHT-RW models

For the LLHT-LR model, the estimate of standard deviation of the predicted coefficients is obtained by

$$\hat{\sigma}(\hat{\gamma}_{m+\tau}) = \hat{\sigma}_{e_{\gamma}} \sqrt{1 + \frac{1}{m} + \frac{(m+\tau-\bar{t})^2}{\sum_{t=1}^m (t-\bar{t})^2}}, \gamma \in \{\alpha,\beta\}$$

where $\hat{\sigma}^2_{e_{\alpha}}$ and $\hat{\sigma}^2_{e_{\beta}}$ are obtained from the residules. For the LLHT-RW model, the estimates of variance of the predicted coefficient are

$$\hat{\sigma}^2(\hat{\alpha}_{m+\tau}) = \hat{\sigma}^2_{e_{\alpha}} \times \tau, \quad \hat{\sigma}^2(\hat{\beta}_{m+\tau}) = \hat{\sigma}^2_{e_{\beta}} \times \tau,$$

where

$$\hat{\sigma}_{\theta_{\alpha}}^{2} = \frac{1}{m-2} \sum_{t=1}^{m-1} [\hat{\alpha}_{t+1} - \hat{\alpha}_{t} - \hat{f}]^{2}, \quad \hat{\sigma}_{\theta_{\beta}}^{2} = \frac{1}{m-2} \sum_{t=1}^{m-1} [\hat{\beta}_{t+1} - \hat{\beta}_{t} - \hat{g}]^{2}.$$

Combining the two sources of variances, the total variance is

$$\hat{\sigma}^2(\ln(\hat{\mu}_{x,t_0+m+\tau}^c)) = \hat{\sigma}^2(\hat{\alpha}_{m+\tau}) \times [\ln(\mu_{x,t_0})]^2 + \hat{\sigma}^2(\hat{\beta}_{m+\tau}) + \hat{\sigma}_{\epsilon}^2.$$

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Data for illustration

- ► For the Lee-Carter and CBD models, 5 cohort mortality sequences $q_{x_0,1956,35}^c, \ldots, q_{x_0,1960,35}^c$ are used for fitting.
- ► For the LLHT models, the period mortality sequence q_{x0,1955,35} is used to fit the 5 cohort mortality sequences q^c_{x0,1956,35}, ..., q^c_{x0,1960,35}, respectively.
- ► The 15 cohort mortality sequences q^c_{x0,1961,35}, ..., q^c_{x0,1975,35} are predicted for all models.
- ► The USA, the UK and Japan population are selected from Human Mortality Database with x₀ ∈ [40, 50].

< 🗇 > < 🖻 > < 🖻 >

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	••••• ••••• •••••

Errors for evaluating accuracy of projection

The *MAE*_t (mean absolute error), *RMSE*_t (root mean square error) and *MAPE*_t (mean absolute percentage error) for $q_{x_0,t,n}^c$ over the age span $[x_0, x_0 + n - 1]$ in year *t* are given by

$$MAE_{t} = \frac{1}{n} \sum_{k=1}^{n} |\hat{q}_{x_{0}+k-1,t+k-1} - q_{x_{0}+k-1,t+k-1}|,$$

$$RMSE_{t} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} [\hat{q}_{x_{0}+k-1,t+k-1} - q_{x_{0}+k-1,t+k-1}]^{2}}$$

and

$$MAPE_{t} = \frac{1}{n} \sum_{k=1}^{n} \left| \frac{\hat{q}_{x_{0}+k-1,t+k-1} - q_{x_{0}+k-1,t+k-1}}{q_{x_{0}+k-1,t+k-1}} \right| \times 100\%.$$

一日、

Introduction O	Models and assumptions OO OOO	Mortality projection	Numerical results
Accuracy of projection			

The overall *MAE*, *RMSE* and *MAPE* over $[x_0, x_0 + n - 1]$ and $[t_0 + m + 1, t_0 + m + M]$ are calculated for comparison.

$$MAE_{[t_0+m+1,t_0+m+M]}^{[x_0,x_0+n-1]} = \frac{1}{M} \sum_{t=t_0+m+1}^{t_0+m+M} MAE_t,$$

$$RMSE_{[t_0+m+1,t_0+m+M]}^{[x_0,x_0+n-1]} = \frac{1}{M} \sum_{t=t_0+m+1}^{t_0+m+M} RMSE_t$$

and

$$MAPE_{[t_0+m+1,t_0+m+M]}^{[x_0,x_0+n-1]} = \frac{1}{M} \sum_{t=t_0+m+1}^{t_0+m+M} MAPE_t.$$

イロト イ団ト イヨト イヨト

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	

Figure: Projected errors MAE against x_0 for the UK males

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: Projected errors *RMSE* against x_0 for the UK males

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: Projected errors *MAPE* against x_0 for the UK males

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Variations of the LLHT for modelling cohort mortality rates

Introduction	
0	

Models and assumptions

Mortality projection

Numerical results

000000

Accuracy of projection

Table: Overall average projection errors over 11 age groups

error	method	USA M	USA F	UK M	UK F	JAP M	JAP F	Average
	LC	18.93	8.98	23.79	13.62	17.57	7.57	15.08
MAE	CBD	13.97	10.44	24.51	10.83	18.81	10.74	14.88
	LR	13.97	8.14	18.58	10.23	19.76	8.21	13.15
	RW	14.27	8.42	21.34	11.89	19.63	8.24	13.97
	LC	24.87	12.13	33.51	19.29	23.82	10.78	20.73
RMSE	CBD	17.69	17.13	36.71	14.82	27.98	17.85	22.03
	LR	18.10	13.42	27.43	14.94	30.51	13.98	19.73
	RW	18.31	13.44	30.67	16.90	30.27	13.98	20.59
	LC	8.47	7.22	10.37	10.38	9.78	8.27	9.08
MAPE	CBD	6.28	6.52	10.22	8.54	9.10	8.98	8.27
	LR	6.15	5.42	7.24	7.36	9.30	6.65	7.02
	RW	6.34	5.69	9.13	9.17	9.13	6.63	7.68

Note that *RMSE* and *MAE* are scaled to $(\times 10^{-4})$ and *MAPE* is a percentage.

Here, the overall average error is defined as $E = \frac{1}{11} \sum_{x_0=40}^{50} E_{[t_0+m+1,t_0+m+M]}^{[x_0,x_0+n-1]}$, $E \in \{MAE, RMSE, MAPE\}$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: 95% confidence intervals on $q_{45,1975,35}^c$ for the USA males

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: 95% confidence intervals on $q^c_{45,1975,35}$ for the USA females

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	00000 00000 00000

Figure: 95% confidence intervals on $q_{45,1975,35}^c$ for the UK males

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: 95% confidence intervals on $q^c_{45,1975,35}$ for the UK females

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 000000 00000

Figure: 95% confidence intervals on $q^c_{45,1975,35}$ for the Japan males

Variations of the LLHT for modelling cohort mortality rates

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	000000 00000 00000

Figure: 95% confidence intervals on $q^c_{45,1975,35}$ for the Japan females

Variations of the LLHT for modelling cohort mortality rates

Introduction O	Models and assumptions oo ooo	Mortality projection	Numerical results ○○○○○○ ○○○○○○ ●○○○○○
Errors in pricing			

Errors in pricing

- ▶ $A_{x_0:\overline{n}}^1$, $\ddot{a}_{x_0:\overline{n}}$ and $P_{x_0:\overline{n}}^1$ are calculated based on the real and predicted $q_{x_0,t,35}^c$ for $x_0 \in [40, 50]$ and $t \in [1961, 1975]$.
- ▶ For each *x*₀ and *t*, the relative error is

$$\frac{\hat{X}_{x_0:\overline{n}|}}{X_{x_0:\overline{n}|}} - 1, X = \{A^1, \ddot{a}, P^1\}.$$

- ► For each year t, the average relative error of each year t over all x₀s (11 age groups) are calculated.
- a poorer forecast on a cohort mortality sequence does not necessarily lead to a higher relative error on premium since

$$_{n}p_{x_{0},t}=p_{x_{0},t}\cdots p_{x_{0}+n-1,t+n-1}.$$

< 回 > < 三 > < 三 >

Introduction O	Models and assumptions	Mortality projection 000000 00000	Numerical results ○○○○○○ ○●○○○○ ○●○○○
Errors in pricing			

Figure: Average relative errors on $A_{x_0:\overline{35}}^1$ for the USA males

Introduction O	Models and assumptions	Mortality projection 000000 00000	Numerical results ○○○○○○ ○○○○○○ ○○●○○
Errors in pricing			

Figure: Average relative errors on $\ddot{a}_{x_0:\overline{35}|}$ for the USA males

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction O	Models and assumptions OO OOO	Mortality projection 000000 00000	Numerical results ○○○○○○ ○○○○●○
Errors in pricing			

Figure: Average relative errors on $P^{1}_{x_{0}:\overline{35}|}$ for the USA males

ъ

Introduction	Models and assumptions	Mortality projection	Numerical results
0	00 000	0000000 00000	00000 00000 0000
Errors in pricing			

Thank you!

Variations of the LLHT for modelling cohort mortality rates

Simon Fraser University