Portfolio Choice with Life Annuities under Probability Distortion

Wenyuan Zheng James G. Bridgeman

Department of Mathematics
University of Connecticut

The 49th Actuarial Research Conference, 2014
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuitization Strategy

Conclusion
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuityization Strategy

Conclusion
The Need for Behavioral Economics

- Policyholder’s behaviors affect insurance companies’ operations
- Behavioral Economics help understand policyholder’s behaviors
Probability Distortion

- People overweight small probabilities and underweight large probabilities

![Weighted Cumulative Probabilities](image-url)
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuitization Strategy

Conclusion
Literature Review

- Yarri (1965)
 - Optimal for an individual without a bequest motive to fully annuitize
- Milevsky and Young (2007)
 - Realistically incorporated mortality-contingent payout annuities (e.g. DB plan)
- Wang and Young (2012)
 - Commutable life annuities to maximize the lifetime utility
- Young and Zariphopoulou (1999)
 - Derive stochastic differential equation for a distorted probability via stochastic differential games
Goal

- Behavioral Economics
 - Probability distortion
- Portfolio Choice
 - Investment, consumption and annuitization strategy
- Continuous-time setting
- Maximize the lifetime utility
- Commutable life annuity
Market

- A riskless asset
- A risky asset
- Commutable life annuities
 - A single premium immediate annuity with a surrender option
New Probability Distortion

- Typical distortion function
 - $w(p) = \frac{p^\delta}{(p^\delta + (1-p)^\delta)^\frac{1}{\delta}}$
- Why difficult to apply?
 - Hard to derive its stochastic differential equation
- We propose a new distortion function
 - $w(p) = 1 - \frac{1}{1 - \delta \cdot \ln(1-p)}$, $\delta > 1$
Weibull Distribution

- Why Weibull distribution for stock price?
 - Explicit hazard function
- Original SDE
 \[dX_s = \left[-X_s^{\gamma} + \gamma X_s \gamma^{-\beta} \frac{\sigma^\beta}{\beta}\right]ds + \left(2X_s^{\gamma-\beta+1} \frac{\sigma^\beta}{\beta}\right)^{\frac{1}{2}} dB_s \]
- Distorted SDE
 \[dX_s = \left[-X_s^{\gamma} + \gamma X_s \gamma^{-\beta} \frac{\sigma^\beta}{\beta} + 2X_s^{\gamma} \left(-1 + \frac{2\delta}{1 + \delta X_s^\beta}\right)\right]ds + \left(2X_s^{\gamma-\beta+1} \frac{\sigma^\beta}{\beta}\right)^{\frac{1}{2}} dB_s \]
- \(\beta\): shape parameter
- \(\sigma\) and \(\gamma\): scale parameters
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuityization Strategy

Conclusion
Model

- **Wealth dynamics**
 \[
 dW_s = \left[r(W_s - \Pi_s) - \Pi_s^\gamma + \gamma \Pi_s^{\gamma - \beta} \frac{\sigma^\beta}{\beta} + 2\Pi_s^\gamma (-1 + \frac{2\delta}{1 + \delta \Pi_s^\beta}) - C_s + A_s \right] ds + (2\Pi_s^{\gamma - \beta} + 1 \frac{\sigma^\beta}{\beta})^{\frac{1}{2}} dB_s
 \]

- **Value function**
 \[
 U(W, A) = \sup_{\pi_s, c_s} \mathbb{E} \left[\int_0^\infty e^{-(r+\lambda)s} u(c_s) ds \right] \mid W_0 = W, A_0 = A
 \]

Zheng and Bridgeman Portfolio Choice under Probability Distortion
Model

HJB equation

\[(r + \lambda)U = (rW_s + A_s)U_w + \max_{\pi_s} \left\{ \left[-r\Pi_s - \Pi_s^\gamma + \gamma\Pi_s^\gamma - \beta \sigma^\beta \right] U_w + \Pi_s^\gamma - \beta + 1 \sigma^\beta U_{ww} \right\} + \max_c \left(\frac{c_s^{1-\gamma}}{1-\gamma} - cU_w \right) \]
Numerical Method

\[U_w(i, j + 1) = U_w(i, j) + [W(2) - W(1)] \cdot U_{ww}(i, j + 1) \]

\[U(i, j + 1) = U(i, j) + [W(2) - W(1)] \cdot U_w(i, j + 1) \]
Parameters

- $r = 0.04$
- $\lambda = 0.04$
- $\beta = 1$
- $\sigma = 5$
- $\gamma = 2$
- $\alpha = 2.5$
- $p = 0.2$
- $\delta = 2$
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuitization Strategy

Conclusion
Investment

Portfolio Choice under Probability Distortion

Zheng and Bridgeman

Introduction
Model
Numerical Results
Conclusion
Investment
Consumption
Annuitization Strategy

Investment

Annuitization Strategy

Zheng and Bridgeman
Portfolio Choice under Probability Distortion
Investment

\[-X_s \gamma + \gamma X_s^{\gamma - \beta} \frac{\sigma^\beta}{\beta} + 2X_s^{\gamma - \frac{2\delta}{1+\delta X_s^\beta}} > 0\]
Outline

Introduction
 Motivation
 Literature Review

Model
 Model Formulation
 Theoretical Results

Numerical Results
 Investment
 Consumption
 Annuitization Strategy

Conclusion
Consumption

Utility Function

Before Distortion (less risk averse)

After Distortion (more risk averse)

Zheng and Bridgeman
Portfolio Choice under Probability Distortion
Annuitization Strategy

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>$U(A+4,W-50)$</td>
</tr>
<tr>
<td>Do nothing</td>
<td>$U(A,W)$</td>
</tr>
<tr>
<td>Surrender</td>
<td>$U(A-4,W+40)$</td>
</tr>
</tbody>
</table>

Zheng and Bridgeman

Portfolio Choice under Probability Distortion
Annuitization Strategy

Undistorted Case

+ : buy
○ : do nothing
× : surrender

Zheng and Bridgeman
Portfolio Choice under Probability Distortion
Annuitization Strategy

Distorted Case

+ : buy
◦ : do nothing
× : surrender
Annuitization Strategy

- Need more annuities to against fear
 - Stop buying annuity at a higher level
 - Begin surrendering annuity at a higher level

- Different z_0: critical ratio of wealth-to-annuity
 - An unique z_0 in Wang and Young (2012)

- Behavior pattern

 \[
 \begin{array}{c|c}
 \text{Wealth} & \text{Surrender} \\
 \hline
 \text{Annuity} & \text{Surrender} \rightarrow \text{Do nothing} \\
 & \text{Do nothing} \\
 & \text{Do nothing} \rightarrow \text{Buy} \\
 & \text{Buy} \\
 \end{array}
 \]
Illustration

<table>
<thead>
<tr>
<th></th>
<th>No Distortion</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>4.97</td>
<td>4.57</td>
</tr>
<tr>
<td>Bond</td>
<td>495.00</td>
<td>445.43</td>
</tr>
<tr>
<td>Consumption</td>
<td>138.42</td>
<td>145.36</td>
</tr>
<tr>
<td>Annuitization</td>
<td>Do nothing</td>
<td>Buy</td>
</tr>
</tbody>
</table>

One year later...

<table>
<thead>
<tr>
<th></th>
<th>No Distortion</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=468 A=62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distortion</td>
<td>W=422 A=66</td>
<td></td>
</tr>
</tbody>
</table>
Illustration

<table>
<thead>
<tr>
<th>No Distortion</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>4.96</td>
</tr>
<tr>
<td>Bond</td>
<td>995.04</td>
</tr>
<tr>
<td>Consumption</td>
<td>149.04</td>
</tr>
<tr>
<td>Annuity</td>
<td>Surrender</td>
</tr>
</tbody>
</table>

One year later...

<table>
<thead>
<tr>
<th>No Distortion</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=1030 A=70</td>
<td></td>
</tr>
<tr>
<td>W=998 A=74</td>
<td></td>
</tr>
</tbody>
</table>

Zheng and Bridgeman

Portfolio Choice under Probability Distortion
Sensitivity Analysis

Zheng and Bridgeman Portfolio Choice under Probability Distortion
Sensitivity Analysis

Annuity Buy/Surrender Behavior (delta=2)

Annuity Buy/Surrender Behavior (delta=5)

Zheng and Bridgeman
Portfolio Choice under Probability Distortion
Conclusion

- Probability distortion brings more fear

- To against fear
 - Invest less on risky asset
 - Consume more
 - Need more annuity (also support more consumption)

- Contribution of this work
 - A new distortion function
 - Weibull distribution for stock price
 - Annuitzation behavior available for each pair of (Wealth, Annuity)
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Model</th>
<th>Numerical Results</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Thank you!