On the Interaction between Transfer Restrictions and Crediting Strategies in Guaranteed Funds

Eric R. Ulm

Financial support from the Society of Actuaries under the CAE research grant is greatly appreciated.

Crediting Strategies

- Contract Descriptions
 - Employees deposit money at regular intervals into a designated account
 - The employee can direct the funds to a number of different accounts
 - Subject to only a few restrictions, they can rebalance their portfolio whenever they want.

Questions...

- Why do insurance companies credit anything other than short term rates on what is (essentially) a demand account?
 - Transfer Restrictions
 - Market Value Adjustments
 - Difficulty switching companies
- What should they do?
- What *do* they do?
- How do policyholders respond?

The Model

- The "game" proceeds as follows. At time t:
 - IC picks r_c , the rate he will credit for the next time period.
 - PH picks his allocation, ω_{t+1} , which becomes a state variable for the next period.
 - PP buys assets, which become state variables for the next period.

The Model

- BDT Interest Rate Model
 Calibrated with 0.14 volatility
- Outcomes:
 - Zero Sum under Q (PV of Book Value Profit)
 - IC likes Q, PH likes utility under P

Propositions

- 2.1 IC's asset purchase strategy is independent of his crediting strategy and independent of PH's choices.
- 2.2 IC is indifferent to his asset strategy.
- 2.3 If there are no transfer restrictions, IC will credit a rate $r_c < r_{t,1}$ and PH will allocate $\omega_{t+1} = 1$ or IC will credit $r_c = r_{t,1}$ and PH will allocate $0 \le \omega_{t+1} \le 1$.
- 2.4 At any given time and state with $\omega_t = 1$, the expected present value of future book profits under Q is the market value of the assets less the book value of the assets. Specifically, the expectation at initiation of the contract is 0.

Proposition 2.5

• In the presence of transfer restrictions, the only reasonable allocations in the period t+1 are $\omega_{t+1} = 0$ and $\omega_{t+1} = (1 - x)\omega_t + x$ (or complete indifference to allocation). The decision of which allocation to choose is independent of the current allocation.

Proof of Prop 2.5

- Imagine the PH has three independent accounts:
 - A guaranteed account of $(1 x)(1 \omega_t)$ which must remain in the guaranteed account and cannot be affected by the PH's current choice.
 - A guaranteed account of $x(1 \omega_t)$ currently allocated to the guaranteed account but fully allocatable in the next period.
 - A money market account of ω_t currently allocated to the money market account but fully allocatable in the next period.

The Optimal Strategies:

 2.6 - In the first period, the policyholder is free to invest at any value of $0 \le \omega_1 \le 1$. If there are transfer restrictions, IC will credit a rate $r_c \leq r_{crit}$ where $r_{crit} \geq r_{1,1}$ and depends on time and state. PH will allocate $\omega_1 = 1$ if $r_c < r_{crit}$ and $0 \le \omega_1 \le 1$ if $r_c = r_{crit}$.

The Optimal Strategies:

- 2.7 -The value of r_{crit} is independent of the state variable ω_t .
- 2.8 If $\omega_t > 0$, IC should set $r_c = 0$.
- 2.9 If IC credits an interest rate larger than r_{crit}, and PH can borrow and lend at prevailing rates outside the pension plan, an arbitrage opportunity exists for PH.

Utility Maximizing PolicyHolders

- Most results still hold even when PH attempts to maximize expected utility under the P measure.
- Risk-Averse Policyholders under P tend to prefer the "trap" strategy to the "money market" strategy since it works better in falling rate scenarios and worse in rising rate scenarios.
- IC credits $r_{crit}^P \leq r_c \leq r_{crit}$

Effect of Minimum Guarantees

- 2.9 Restated If $\omega_t > 0$, PP should set $r_c = r_{\min}$.
- It is possible for r_{\min} to exceed r_{crit} in which case PH transfers to guaranteed fund (Option Value)
- Value at initiation is not "0".
- Utility under P may still allow IC to make a profit.

r_{crit} with "0" floor, 25% restriction

r_{crit} with 3% floor, 25% restriction

r_{crit}^{P} vs. Time for Risk-Averse Policyholders.

Actual and Critical Credited Rates.

Regression Analysis

 Interest Credited vs. Internal and External Rates.

	Coefficients	Standard Error	P-value
	Coomoionte	olandara Error	i value
Intercept	-\$3,547,190	\$446,845	2.38E-15
Assets	0.006	0.001	5.57E-17
NII on Line	0.076	0.003	4.7E-101
NII Proportional	0.049	0.009	1.59E-07
Short Term	0.288	0.019	1.38E-49
5 Year	-1.634	0.073	3.9E-108
10 Year	2.208	0.065	2.5E-234

Conclusions

- Optimal Strategy:
 - IC credits r_{crit} then r_{min}
 - PH transfers out of MM if $r_c \ge r_{crit}$ and into MM otherwise.
- Restricted Arbitrage Opportunities are possible.
- Companies tend to credit based on external rates, not company specific NII rates.