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Abstract

This paper gives a complete solution to the problem of the type

inf
X∈F

E[(x−X)+]

subject to E[X] ≥ z, Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

where the constants satisfy −∞ < xd < xr < xu ≤ ∞, x ∈ R, z ∈ R. The expectations E[·] and Ẽ[·] are

taken under two equivalent probability measures P and P̃ under the assumption that the Radon-Nikodým

derivative has a continuous distribution. The result is then used to find the optimal dynamic portfolio

which minimizes the Conditional Value-at-Risk in a complete market model.
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1 Introduction to the Main Problem

The portfolio selection problem studied in Markowitz [9] is set up as an optimization problem with the

objective of maximizing expected return, subject to the constraint of variance being bounded above. Bielecki

et. al. [2] solved the reverse problem in a dynamic setting with the objective of minimizing variance, subject

to the expected return being bounded below. In both cases, the measure of risk of the portfolio is chosen as
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variance. In this work, we attempt to replace variance with a more modern choice of risk measure. Although

Value-at-Risk is the most dominant risk measure used in practice, Artzner et. al. [3] and [4] have proposed

general axioms for coherent risk measure, a standard measured by which Value-at-Risk has failed. Our choice

is the Conditional Value-at-Risk (CVaR) which is a coherent risk measure defined incrementally based on

Value-at-Risk. For references on CVaR, see Acerbi and Tasche [1], Rockafellar and Uryasev [11] and [12], and

Föllmer and Schied [7]. In the following, we look for the optimal investment strategy to minimize CVaR of

the final portfolio value while requiring its expectation to be above a constant in a dynamic continuous-time

complete market setting.

Suppose the interest rate is a constant r and the risky asset St is a real-valued semimartingale process on

the filtered probability space (Ω,F , (F)0≤t≤T , P ) that satisfies the usual conditions where F0 is trivial and

FT = F . The value of a self-financing portfolio Xt which invests ξt shares in the risky asset evolves according

to the dynamics

dXt = ξtdSt + r(Xt − ξtSt)dt, X0 = x0.

We are looking for a strategy (ξt)0≤t≤T to minimize the conditional Value-at-Risk at level 0 < λ < 1 of

the final portfolio value: infξt
CV aRλ(XT ), while requiring the expected value to remain above constant z:

E[XT ] ≥ z. In addition, we allow uniform bounds on the value of the portfolio over time: xd ≤ Xt ≤ xu a.s.,

∀t ∈ [0, T ], where the constants satisfy −∞ < xd < x0 < xu ≤ ∞. Therefore, our Main Problem is

inf
ξt

CV aRλ(XT )(1)

subject to E[XT ] ≥ z,

xd ≤ Xt ≤ xu a.s., ∀t ∈ [0, T ].

Assumption 1.1 Assume there is no arbitrage and the market is complete with a unique equivalent local

martingale measure P̃ where the Radon-Nikodým derivative dP̃
dP has a continuous distribution.

Then any F-measurable random variable can be replicated by a dynamic portfolio. The above dynamic

optimization problem can be reduced to a static one

inf
X∈F

CV aRλ(X)(2)

subject to E[X] ≥ z, Ẽ[X] = xr, xd ≤ X ≤ xu a.s..
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Here the expectation E is taken under the physical probability measure P , and the expectation Ẽ is taken

under the risk neutral probability measure P̃ , while xr = x0e
rT . To solve the main problem in an incomplete

market setting, the exact hedging argument that translate the dynamic problem (1) into the static problem

(2) has to be replaced by a super-hedging argument. This is done for expected shortfall minimization in

Föllmer and Leukert [6], and for convex risk minimization in Rudloff [13]. Similarly, the hedging result can

be easily adapted for St to be Rd-valued, where the dimension d is a natural number. The second part

of the assumption, namely the Radon-Nikodým derivative dP̃
dP has a continuous distribution, is also made

not because of technical impossibility, but because of the simplification it brings to the presentation for its

lengthy discussion does not bring additional new insight to the main topic of this paper.

Using the equivalence between conditional Value-at-Risk and the Fenchel-Legendre dual of the expected

shortfall derived in Rockafellar and Uryasev ([11] and [12]),

(3) CV aRλ(X) =
1
λ

inf
x∈R

(
E[(x−X)+]− λx

)
, ∀λ ∈ (0, 1),

the static optimization problem can be further reduced to a two-step static optimization we name as

Two-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+](4)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Step 2: Minimization of conditional Value-at-Risk

(5) inf
X∈F

CV aRλ(X) =
1
λ

inf
x∈R

(v(x)− λx) .

Without the condition on the expectation E[X] ≥ z, we name the problem as

One-Constraint Problem:
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Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+](6)

subject to Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Step 2: Minimization of conditional Value-at-Risk

(7) inf
X∈F

CV aRλ(X) =
1
λ

inf
x∈R

(v(x)− λx) .

The solution to the problem of Minimization of Expected Shortfall in (6) is given in Föllmer and Leukert

[6]; the solution to the problem of Minimization of CVaR in (7), and thus the main problem in (1) and

(2) without return constraint is given in Schied [15], Sekine [16], and Li and Xu [8]. With the additional

condition on the expectation E[X] ≥ z, Rockafellar and Uryasev [11] provides a linear programming solution

for the Monte-Carlo simulation of the one-time step problem. The dynamic solution given in Ruszczyński

and Shapiro [14] requires the modification of the CVaR into a dynamic version. The new results obtained

in this paper is to provide a solution to the problem of Minimization of Expected Shortfall in (4) under the

condition on the expectation E[X] ≥ z, and thus the solution to the problem of Minimization of CVaR in

(1) and (2) under the same condition.

Föllmer and Leukert [6] derived the optimal solution to Step 1 of the One-Constraint Problem,

(8) X(x) = xdIn dP̃
dP >a

o + xIn dP̃
dP ≤a

o, for xd < x < xu.

The above X is the solution under a special case when the Radon-Nikodým derivative dP̃
dP |T is restricted to

have a continuous distribution to minimize the complication in its presentation. The optimality of X can be

proved in various ways, but it is clearly a result of Neyman-Pearson lemma once the connection between the

problem of Minimization of Expected Shortfall and that of hypothesis testing between P and P̃ is established.

To view it as a solution from convex duality approach, see Theorem 1.19 in Xu [17]. A direct method using

Lagrange multiplier for convex optimization, a simplified version to that in the proof of Proposition 2.14,

is yet another nice approach. Note that in (8), a is computed from the budget constraint Ẽ[X] = xr for

every fixed constant x. To proceed to Step 2, Li and Xu [8] varied the value of x and looked for the best
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x∗. Define set A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
. Let a∗ and A∗ be the solution to the equation 1

a = λ−P (A)

1−P̃ (A)
.

Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
. Under some technical conditions, the solution to Step 2 of the One-Constraint

Problem is shown in Li and Xu [8] to be

X∗ = xdIA∗ + x∗IA∗c , (Two-Line Configuration)(9)

CV aRλ(X∗) = −xr +
1
λ

(x∗ − xd)
(
P (A∗)− λP̃ (A∗)

)
,

regardless whether xu < ∞ or xu = ∞. More general solutions in the case when the Radon-Nikodým

derivative dP̃
dP |T is not restricted to have a continuous distribution is presented in detail with computational

examples in Li and Xu [8]. Note that the two-line configuration in (9) is inherited from the Neyman-Pearson

lemma. We will see in Section 2 that when xu < ∞, under some technical conditions, the solutions to both

Step 1 and Step 2 of the Two-Constraint Problem, and thus the Main Problem (1) and (2), turn out

to be a three-line configuration of the form

X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ , , (Three-Line Configuration)

where x∗∗, as well as A∗∗ =
{

ω ∈ Ω : dP̃
dP (ω) > a∗∗

}
, B∗∗ =

{
ω ∈ Ω : b∗∗ ≤ dP̃

dP (ω) ≤ a∗∗
}

and D∗∗ ={
ω ∈ Ω : dP̃

dP (ω) < b∗∗
}

are associated to the optimal choice of a∗∗ and b∗∗. When xu = ∞, the optimal

solution X most likely will not exist, but the infimum of the CVaR can still be computed.

The key to finding the exact solution to the main problem without return constraint, is to find the pair

(a∗, x∗) in the One-Constraint Problem; or the triplet (a∗∗, b∗∗, x∗∗) in the Two-Constraint Problem.

In the first case, Theorem 2.10 and Remark 2.11 in Li and Xu [8] state that (a∗, x∗) is the solution to the

capital constraint (Ẽ[X] = xr) and first order Euler condition (v′(x) = 0 in Step 2):

xdP̃ (A) + xP̃ (Ac) = xr,

P (A) +
P̃ (Ac)

a
− λ = 0.

In the second case, we will see in Proposition 2.14 and Theorem 2.15 that (a∗∗, b∗∗, x∗∗) is the solution to
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the same two conditions plus the return constraint (E[X] = z):

xdP (A) + xP (B) + xuP (D) = z,

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr,

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0.

The main theorems about the solutions to both Step 1 and Step 2 to the Two-Constraint Problem

are stated in Section 2; their proofs are recorded in Section 3; Section 4 lists possible future work.

2 Solution to the Main Problem

2.1 Case: xu < ∞

Before establishing their existence, we first define some particular Two-Line Configurations and the general

Three-Line Configuration that satisfy their respective capital and expected return constraints. Recall the

definitions of the sets

(10) A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, B =

{
ω ∈ Ω : b ≤ dP̃

dP (ω) ≤ a
}

, D =
{

ω ∈ Ω : dP̃
dP (ω) < b

}
.

Definition 2.1 Three-Line Configuration has the structure X = xdIA + xIB + xuID.

Two-Line Configuration X = xIB + xuID is always associated to the definitions a = ∞, B ={
ω ∈ Ω : dP̃

dP (ω) ≥ b
}

and D =
{

ω ∈ Ω : dP̃
dP (ω) < b

}
.

Two-Line Configuration X = xdIA + xIB is always associated to the definitions b = 0, A ={
ω ∈ Ω : dP̃

dP (ω) > a
}
, and B =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a
}
.

Two-Line Configuration X = xdIA + xuID is always associated to the definitions a = b, A ={
ω ∈ Ω : dP̃

dP (ω) > a
}
, and D =

{
ω ∈ Ω : dP̃

dP (ω) < a
}
.

General Constraints are the capital constraint and the equality part of the expected return constraint

for Three-Line Configuration X = xdIA + xIB + xuID:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.
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Degenerated Constraints 1 are the capital constraint and the equality part of the expected return constraint

for Two-Line Configuration X = xIB + xuID:

E[X] = xP (B) + xuP (D) = z,

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr.

Degenerated Constraints 2 are the capital constraint and the equality part of the expected return constraint

for Two-Line Configuration X = xdIA + xIB:

E[X] = xdP (A) + xP (B) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr.

Degenerated Constraints 3 are the capital constraint and the equality part of the expected return constraint

for Two-Line Configuration X = xdIA + xuID:

E[X] = xdP (A) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xuP̃ (D) = xr.

Note that Degenerated Constraints 1 corresponds to the General Constraints when a = ∞; De-

generated Constraints 2 corresponds to the General Constraints when b = 0; and Degenerated

Constraints 3 corresponds to the General Constraints when a = b.

Definition 2.2 For fixed −∞ < xd < xr < xu < ∞, let ā = b̄ be the constant that satisfies capital

constraint Ẽ[X] = xdP̃ (A)+xuP̃ (D) = xr for configuration X = xdIA+xuID in Degenerated Constraints

3. Consequently, Ā, D̄ and X̄ are associated to the constant ā = b̄, i.e., X̄ = xdIĀ + xuID̄ where Ā ={
ω ∈ Ω : dP̃

dP (ω) > ā
}
, and D̄ =

{
ω ∈ Ω : dP̃

dP (ω) < ā
}
. Define z̄ = E[X̄] = xdP (Ā) + xuP (D̄).

Note that z̄ is the unique expected value of a Two-Line configuration that satisfy Degenerated Con-

straints 3.

Lemma 2.3 z̄ is the highest return that can be obtained by a portfolio with initial capital x0 and is bounded

between xd and xu:

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr, xd ≤ X ≤ xu a.s..
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From now on, we will concern ourselves with z ∈ [xr, z̄]. The lower bound can be interpreted that the

investment will yield a higher return than the risk-free rate r, i.e., z = E[X] ≥ x0e
rT = xr. Mathematically,

when z ∈ (−∞, xr), the optimal solution X∗ to the One-Constraint Problem satisfies the return constraint

E[X∗] ≥ z automatically (see Lemma 2.4), thus it is also the optimal solution to the Two-Constraint

Problem. We refer to Li and Xu [8] for the details. For convenience, we will state in Theorem 2.11 the main

results from Li and Xu [8] about X∗ under additional Assumption 1.1.

Lemma 2.4 For fixed −∞ < xd < xr < xu < ∞, and any x ∈ [xd, xr], choose b so that configuration

X = xIB+xuID satisfies the capital constraint Ẽ[X] = xP̃ (B)+xuP̃ (D) = xr in Degenerated Constraints

1. Let z = E[X] = xP (B) + xuP (D). Then z decreases continuously from z̄ to xr as x increases from xd

to xr. For any x ∈ [xr, xu], choose a so that configuration X = xdIA + xIB satisfies the capital constraint

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2. Let z = E[X] = xdP (A) + xP (B). Then

z increases continuously from xr to z̄ as x increases from xr to xu.

From the above lemma, we can see that for given x value, we can compute the corresponding z value in

Degenerated Constraints 1 and Degenerated Constraints 2. Since their relationship is monotone and

continuous in each situation, given z we can find the corresponding x value in both situations.

Definition 2.5 For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], define xz1 and xz2 to be

the corresponding x values for configurations that satisfy Degenerated Constraints 1 and Degenerated

Constraints 2 respectively.

Definition 2.5 means that when we fix z in a proper interval [xr, z̄], we can find two feasible solutions:

X = xz1IB + xuID satisfying Ẽ[X] = xz1P̃ (B) + xuP̃ (D) = xr and E[X] = xz1P (B) + xuP (D) = z;

X = xdIA + xz2IB satisfying Ẽ[X] = xdP̃ (A) + xz2P̃ (B) = xr and E[X] = xdP (A) + xz2P (B) = z.

Now if we fix x ∈ [xd, xz1], and as in Lemma 2.4, choose b so that configuration X = xIB + xuID satisfies

the capital constraint Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1. At the left end

point x = xd, we encounter X̄ given by Degenerated Constraints 3 in Definition 2.2 and corresponding

z̄ = E[X̄] ≥ z. At the right end point x = xz1, we encounter X = xz1IB + xuID such that E[X] = z. In

between, E[X], where X = xIB + xuID and Ẽ[X] = xr, is decreasing according to Lemma 2.4. We recognize

that E[X] = xP (B) + xuP (D) ≥ z, for all x ∈ [xd, xz1]. Similar analysis can be applied to the interval

x ∈ [xz2, xu]. We make this conclusion in the following lemma.

Lemma 2.6 For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄],
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1. If we fix x ∈ [xd, xz1], the Two-Line Configuration X = xIB +xuID which satisfies the capital constraint

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1 satisfies the expected return constraint:

E[X] = xP (B) + xuP (D) ≥ z;

2. If we fix x ∈ (xz1, xr], the Two-Line Configuration X = xIB +xuID which satisfies the capital constraint

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1 fails the expected return constraint:

E[X] = xP (B) + xuP (D) < z;

3. If we fix x ∈ [xr, xz2), the Two-Line Configuration X = xdIA+xIB which satisfies the capital constraint

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2 fails the expected return constraint:

E[X] = xP (B) + xuP (D) < z;

4. If we fix x ∈ [xz2, xu], the Two-Line Configuration X = xdIA+xIB which satisfies the capital constraint

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2 satisfies the expected return constraint:

E[X] = xP (B) + xuP (D) ≥ z.

Proposition 2.7 For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], if we fix x ∈ [xd, xz1], then there

exists a Two-Line Configuration X = xIB + xuID which is the optimal solution to Step 1 of the Two-

Constraint Problem; if we fix x ∈ [xz2, xu], then there exists a Two-Line Configuration X = xdIA+xIB

which is the optimal solution to Step 1 of the Two-Constraint Problem.

When x ∈ (xz1, xz2), the Two-Line Configurations that can be achieved with the right amount of initial

capital (Ẽ[X] = xr) do not generate high enough expected return (E[X] < z) to be feasible, so we have to

look for a novel solution of Three-Line Configuration that is both feasible and optimal.

Lemma 2.8 For fixed −∞ < xd < xr < xu < ∞, fixed z ∈ [xr, z̄], and fixed x ∈ (xz1, xz2), choose the pair

of real numbers −∞ < b ≤ a < ∞ so that configuration X = xdIA + xIB + xuID always satisfies the capital

constraint Ẽ[X] = xdP̃ (A)+xP̃ (B)+xuP̃ (D) = xr in General Constraints. When b = b̄ = ā = a, X = X̄

and E[X̄] = z̄. When b < b̄ and a > ā, the expected value E[X] = xdP (A) + xP (B) + xuP (D) decreases

continuously as b decreases and a increases. In the extreme case b = 0, the Three-Line configuration becomes

the Two-Line Configuration X = xIB + xuID; in the extreme a = ∞, the Three-Line configuration becomes

the Two-Line Configuration X = xdIA+xIB. In either extreme cases, the expected value is below z by Lemma

2.6.
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Proposition 2.9 For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], if we fix x ∈ (xz1, xz2), then

there exists a Three-Line Configuration X = xdIA +xIB +xuID that satisfies the General Constraints

which is the optimal solution to Step 1 of the Two-Constraint Problem.

Let us recall the first step for the Two-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+]

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Theorem 2.10 (Solution to Step 1: Minimization of Expected Shortfall) For fixed −∞ < xd <

xr < xu < ∞, and fixed z ∈ [xr, z̄]. The optimal X(x) and the corresponding value function v(x) to

Step 1: Minimization of Expected Shortfall of the Two-Constraint Problem are as follows:

• x ∈ (−∞, xd]:

X(x) = any random variable with values in [xd, xu] satisfying both Ẽ[X(x)] = xr and E[X(x)] ≥ z,

v(x) = 0.

• x ∈ [xd, xz1]:

X(x) = any random variable with values in [x, xu] satisfying both Ẽ[X(x)] = xr and E[X(x)] ≥ z,

v(x) = 0.

• x ∈ (xz1, xz2):

X(x) = xdIAx
+ xIBx

+ xuIDx
where Ax, Bx, Dx are determined by ax and bx through definitions (10)

satisfying the General Constraints: Ẽ[X(x)] = xr and E[X(x)] = z,

v(x) = (x− xd)P (Ax).
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• x ∈ [xz2, xu]:

X(x) = xdIAx + xIBx where Ax, Bx are determined by ax as in Definition 2.1 satisfying both

Ẽ[X(x)] = xr and E[X(x)] ≥ z,

v(x) = (x− xd)P (Ax).

• x ∈ [xu,∞):

X(x) = xdIĀ + xuIB̄ = X̄ where Ā, B̄ are associated to ā as in Definition 2.2 satisfying both

Ẽ[X(x)] = xr and E[X(x)] = z̄ ≥ z,

v(x) = (x− xd)P (Ā) + (x− xu)P (B̄).

To solve Step 2 of the Two-Constraint Problem, we need to find

1
λ

inf
x∈R

(v(x)− λx),

where we have already computed v(x) in Theorem 2.10. It turns out that depending on the z level in the

return constraint of the Two-Constraint Problem, sometimes the optimal is obtained by the Two-Line

solution to the One-Constraint Problem, other times it is obtained by a true Three-Line solution. To

accomplish this, we have to recall the results of Theorem 2.10 and Remark 2.11 in Li and Xu [8].

Theorem 2.11 (Theorem 2.10 and Remark 2.11 in Li and Xu [8] when xu < ∞)

1. Suppose ess sup dP̃
dP ≤ 1

λ . X = xr is the optimal solution to Step 2: Minimization of Conditional

Value-at-Risk of the One-Constraint Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP > 1

λ .

• If 1
ā ≤ λ−P (Ā)

1−P̃ (Ā)
(see Definition 2.2), then X̄ = xdIĀ + xuID̄ is the optimal solution to Step

2: Minimization of Conditional Value-at-Risk of the One-Constraint Problem and the
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associated minimal risk is

CV aR(X̄) = −xr +
1
λ

(xu − xd)(P (Ā)− λP̃ (Ā)).

• Otherwise, let a∗ be the solution to the equation 1
a = λ−P (A)

1−P̃ (A)
. Associate sets A∗ ={

ω ∈ Ω : dP̃
dP (ω) > a∗

}
and B∗ =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a∗
}

to level a∗. Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)

so that configuration

X∗ = xdIA∗ + x∗IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr in Degenerated Constraints

2. Then X∗ is the optimal solution to Step 2: Minimization of Conditional Value-at-Risk

of the One-Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Definition 2.12 In part 2 of Theorem 2.11, define z∗ = z̄ in the first case when 1
ā ≤ λ−P (Ā)

1−P̃ (Ā)
; define

z∗ = E[X∗] in the second case when 1
ā > λ−P (Ā)

1−P̃ (Ā)
.

It is straightforward to see that when z is smaller than z∗, the Two-Line solution provided in Theorem

2.11 is indeed the optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-

Constraint Problem. While when z is greater than z∗ the Two-Line solutions are no longer feasible in the

Two-Constraint Problem and we will show now that the Three-Line solutions are not only feasible but

also optimal.

For z ∈ (z∗, z̄], Step 2 of the Two-Constraint Problem

1
λ

inf
x∈R

(v(x)− λx)

is the minimum of the following five sub-problems after applying Theorem 2.10:

Case 1
1
λ

inf
(−∞,xd]

(v(x)− λx) =
1
λ

inf
(−∞,xd]

(−λx) = −xd;

Case 2
1
λ

inf
[xd,xz1]

(v(x)− λx) =
1
λ

inf
[xd,xz1]

(−λx) = −xz1 ≤ −xd;
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Case 3
1
λ

inf
(xz1,xz2)

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) ;

Case 4
1
λ

inf
[xz2,xu]

(v(x)− λx) =
1
λ

inf
[xz2,xu]

((x− xd)P (Ax)− λx) ;

Case 5
1
λ

inf
[xu,∞)

(v(x)− λx) =
1
λ

inf
[xu,∞)

(
(x− xd)P (Ā) + (x− xu)P (B̄)− λx

)
.

We first establish the convexity of the objective function and its continuity in Lemma 2.13, then we prove

the Three-Line solution which is feasible and satisfies the first order condition is indeed optimal.

Lemma 2.13 v(x) is a convex function for x ∈ R, and thus continuous.

Proposition 2.14 For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ (z∗, z̄]. Suppose ess sup dP̃
dP > 1

λ . The

solution a∗∗, b∗∗ and x∗∗ (and consequently, A∗∗, B∗∗ and D∗∗) to the system

xdP (A) + xP (B) + xuP (D) = z, (return constraint)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0, (first order Euler condition)

exists. X∗∗ = xdIA∗∗ +x∗∗IB∗∗ +xuID∗∗ is the optimal solution to Step 2: Minimization of Conditional

Value-at-Risk of the Two-Constraint Problem where

1
λ

inf
x∈R

(v(x)− λx) =
1
λ

min
(xz1,xz2)

(v(x)− λx),

and the associated minimal risk is

CV aR(X∗∗) =
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

Theorem 2.15 (Solution to Step 2: Minimization of Conditional Value-at-Risk) For fixed −∞ <

xd < xr < xu < ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. X = xr is the optimal solution to Step 2: Minimization of

13



Conditional Value-at-Risk of the Two-Constraint Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr, z̄]. The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X) = −xr.

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z
∗].

• If 1
ā ≤ λ−P (Ā)

1−P̃ (Ā)
(see Definition 2.2), then X̄ = xdIĀ + xuID̄ is the optimal solution to Step

2: Minimization of Conditional Value-at-Risk of the Two-Constraint Problem and the

associated minimal risk is

CV aR(X̄) = −xr +
1
λ

(xu − xd)(P (Ā)− λP̃ (Ā)).

• Otherwise, X∗ = xdIA∗ +x∗IB∗ defined in Theorem 2.11 is the optimal solution to Step 2: Mini-

mization of Conditional Value-at-Risk of the Two-Constraint Problem and the associated

minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

4. Suppose ess sup dP̃
dP > 1

λ and z ∈ (z∗, z̄]. X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ defined in Proposition

2.14 is the optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the Two-

Constraint Problem and the associated minimal risk is

CV aR(X∗∗) =
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

2.2 Case: xu = ∞

We first restate Theorem 2.11 in the current context. When xu = ∞, we interpret Ā = Ω and z̄ = ∞.

Theorem 2.16 (Theorem 2.10 and Remark 2.11 in Li and Xu [8] when xu = ∞)

1. Suppose ess sup dP̃
dP ≤ 1

λ . X = xr is the optimal solution to Step 2: Minimization of Conditional

14



Value-at-Risk of the One-Constraint Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP > 1

λ . Let a∗ be the solution to the equation 1
a = λ−P (A)

1−P̃ (A)
. Associate sets A∗ ={

ω ∈ Ω : dP̃
dP (ω) > a∗

}
and B∗ =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a∗
}

to level a∗. Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
so that

configuration

X∗ = xdIA∗ + x∗IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr in Degenerated Constraints 2.

Then X∗ is the optimal solution to Step 2: Minimization of Conditional Value-at-Risk of the

One-Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Theorem 2.17 (Minimization of Conditional Value-at-Risk When xu = ∞) For fixed −∞ < xd <

xr < xu = ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. X = xr is the optimal solution to Step 2: Minimization of

Conditional Value-at-Risk of the Two-Constraint Problem and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr,∞). The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X) = −xr.

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z
∗]. X∗ is the optimal solution to Step 2: Minimization of

Conditional Value-at-Risk of the Two-Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).
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4. Suppose ess sup dP̃
dP > 1

λ and z ∈ (z∗,∞). The optimal solution to Step 2: Minimization of Condi-

tional Value-at-Risk of the Two-Constraint Problem does not exist and the minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Example 2.18 (CVaR Minimization under Black-Scholes’ Model) Suppose an agent is trading be-

tween a money market account with interest rate r = 5% and one stock that follows geometric Brownian

motion dSt = µStdt + σStdWt with parameter values µ = 0.2, σ = 0.1 and S0 = 10. The endowment starts

at X0 = 10 and bankruptcy is not allowed at any time, thus Xt ≥ 0 for all t. The expected terminal value

E[XT ] at time horizon T = 2 is required to be above a fixed level z. Take z ∈ [z∗, z̄], where z∗ is the optimal

expected terminal value achieved by the ‘one-star-system’ when there is no return requirement and z̄ is the

highest expected value achievable. We let the final value to be bounded above by xu < ∞ since it is of interest

to see cases where the optimal of the two-constraint problem is achieved by ‘double-star-system’. Recall that

the triplet (a∗∗, b∗∗, x∗∗) in the ‘double-star-system’ is the solution to the system

xdP (A) + xP (B) + xuP (D) = z, (return constraint)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0, (first order Euler condition)

where in the Black-Sholes model, P (A), P (B), P (D) and P̃ (A), tildeP (B), P̃ (D) can be written as

P (A) = N(− θ
√

T
2 − ln a

θ
√

T
), P (D) = 1−N(− θ

√
T

2 − ln b
θ
√

T
), P (B) = 1− P (A)− P (D),

P̃ (A) = N( θ
√

T
2 − ln a

θ
√

T
), P̃ (D) = 1−N( θ

√
T

2 − ln b
θ
√

T
), P̃ (B) = 1− P̃ (A)− P̃ (D).

Then the optimal portfolio, its hedging strategy and the associated minimum CVaR can be calculated as below:

CV aR(X∗∗) =
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗)

X∗∗
t = e−r(T−t)[x∗∗N(d+(a∗∗, St, t)) + xdN(d−(a∗∗, St, t))]

+ e−r(T−t)[x∗∗N(d−(b∗∗, St, t)) + xuN(d+(b∗∗, St, t))]− er(T−t)x∗∗,

ξ∗∗t =
x∗∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗∗,St,t)

2 +
x∗∗ − xu

σSt

√
2π(T − t)

e−r(T−t)−
d2
+(b∗∗,St,t)

2 .
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where N(·) is the cumulative distribution function for standard normal distribution,

d−(a, s, t) = 1
θ
√

T−t
[− ln a + θ

σ (µ+r−σ2

2 t− ln s
S0

) + θ2

2 (T − t)], d+(a, s, t) = −d−(a, s, t),

and θ = µ−r
σ .

One-Constraint Optimization Two-Constraint Optimization

xu 30 50 xu 30 30 50
z 20 25 25

z̄ 28.8866 28.8866 45.5955
z∗ 18.8742 18.8742 18.8742

x∗ 19.0670 19.0670 x∗∗ 19.1258 19.5734 19.1434
a∗ 14.5304 14.5304 a∗∗ 14.3765 12.5785 14.1677

b∗∗ 0.0068 0.1326 0.0172

CV aR(X∗
T ) -15.2118 -15.2118 CV aR(X∗∗

T ) -15.2067 -14.8405 -15.1483

Table 1: Black-Scholes’ Example without & with Expected Return Constraint

We observe from Table 1 that different values of xu do not have any impact in the one-constraint case

as long as the optimal solution is achieved by the ‘star-system’ (x∗, a∗). Thus z∗ calculated from this system

is not impacted either. However, as the upper bound xu increases, z̄ increases, which allows more choices of

higher expected return z.

Compare the results of the three cases where xu = 30 in the table, we see that the higher the required

return, the harder it is to obtain a low CVaR. This is also true for the two cases where xu = 50. Now let

us compare the two columns to the right: the two cases have the same required return 25. When the upper

bound xu is higher (=50), the attainable return z̄ is higher (=45.5955), the required return z = 25 is relatively

easier to achieve, thus has less impact in minimizing CVaR. In the two cases where xu = 50, minimal CVaR

only increases a little from -15.2118 to -15.1483 with the added return constraint. An intuition we can get

from this comparison is that when we let the upper bound be extremely large (xu ↑ ∞), the attainable return

z̄ will also be so large that any required return z will seem to be effortless to obtain, thus the value of minimal

CVaR is almost not impacted.

Let us have a look at the threshold b∗∗: when this number is small, the optimal of the two-constraint

problem is very close to the optimal of the one-constraint problem. In the extreme that b∗∗ = 0, the two

problems coincide. With the same upper bound, the higher the required return, the more adjustment needs

to be made on X∗
T to obtain X∗∗

T , thus the larger the b∗∗ value. With the same required return, the higher

the upper bound, the less the effort needed in adjusting X∗
T , thus the less the b∗∗ value. In the limiting case,

xu ↑ ∞, b∗∗ ↓ 0, thus CV aR(X∗∗
T ) ↓ CV aR(X∗

T ).
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Figure 1 shows the efficient frontier of a mean-CVaR portfolio selection problem with bankruptcy prohibi-

tion and upper bound xu = 30, where all the portfolios on the curve are efficient in the sense that the lowest

risk as measured by CVaR is attained at each level of required expected terminal value z. The two dashed

lines are at z = z∗ = 18.8742 and z = z̄ = 28.8866. Given the parameters, the minimal CVaR is a constant

for z ≤ z∗, and increases as the required z increases for z ∈ (z∗, z̄] between the dashed lines.

The star positioned at (−xr, xr) = (−11.0517, 11.0517), where xr = X0e
rT , is the portfolio that invests

purely in money market account. Comparing to the traditional CML (i.e., capital market line) that shows the

efficient frontier for a mean-variance portfolio selection problem, the pure money market account portfolio is

no longer efficient.

−16 −15 −14 −13 −12 −11 −10
0 

5 

10

15

20

25

30

CV aR(XT )

z

z
∗

z̄

Figure 1: Efficient Frontier for Mean-CVaR Portfolio Selection

3 Proofs

Proof of Lemma 2.3. The problem of

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

is equivalent to the Expected Shortfall Problem

z̄ == − min
X∈F

E[(xu −X)+] s.t. Ẽ[X] = xr, X ≥ xd a.s..
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Therefore, the answer is immediate. �

Proof of Lemma 2.4. Choose xd ≤ x1 < x2 ≤ xr. Let X1 = x1IB1 + xuID1 where B1 ={
ω ∈ Ω : dP̃

dP (ω) ≥ b1

}
and D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Choose b1 such that Ẽ[X1] = xr. This capital

constraint means x1P̃ (B1)+xuP̃ (D1) = xr. Since P̃ (B1)+ P̃ (D1) = 1, P̃ (B1) = xu−xr

xu−x1
and P̃ (D1) = xr−x1

xu−x1
.

Define z1 = E[X1]. Similarly, z2, X2, B2, D2, b2 corresponds to x2 where b1 > b2 and P̃ (B2) = xu−xr

xu−x2
and

P̃ (D2) = xr−x2
xu−x2

. Note that D2 ⊂ D1, B1 ⊂ B2 and D1\D2 = B2\B1. We have

z1 − z2 = x1P (B1) + xuP (D1)− x2P (B2)− xuP (D2)

= (xu − x2)P (B2\B1)− (x2 − x1)P (B1)

= (xu − x2)P
(
b2 < dP̃

dP (ω) < b1

)
− (x2 − x1)P

(
dP̃
dP (ω) ≥ b1

)
= (xu − x2)

∫
�

b2<
dP̃
dP (ω)<b1

� dP
dP̃

(ω)dP̃ (ω)− (x2 − x1)
∫
�

dP̃
dP (ω)≥b1

� dP
dP̃

(ω)dP̃ (ω)

> (xu − x2)
1
b1

P̃ (B2\B1)− (x2 − x1)
1
b1

P̃ (B1)

= (xu − x2)
1
b1

(
xu − xr

xu − x2
− xu − xr

xu − x1

)
− (x2 − x1)

1
b1

xu − xr

xu − x1
= 0.

For any given ε > 0, choose x2 − x1 ≤ ε, then

z1 − z2 = (xu − x1)P (B2\B1)− (x2 − x1)P (B2)

≤ (xu − x1)P (B2\B1)

≤ (xu − x1)
(

xu − xr

xu − x2
− xu − xr

xu − x1

)
≤ (x2 − x1)(xu − xr)

xu − x2
≤ x2 − x1 ≤ ε.

Therefore, z decreases continuously as x increases when x ∈ [xd, xr]. When x = xd, z = z̄ from Definition

2.2. When x = xr, X ≡ xr and z = E[X] = xr. Similarly, we can show that z increases continuously from

xr to z̄ as x increases from xr to xu. �

Lemma 2.6 and Proposition 2.7 are natural logical consequences and their proofs will be skipped.

Proof of Lemma 2.8. Choose −∞ < b1 < b2 ≤ b̄ = ā ≤ a2 < a1 < ∞. Let configuration

X1 = xdIA1 + xIB1 + xuID1 correspond to the pair (a1, b1) where A1 =
{

ω ∈ Ω : dP̃
dP (ω) > a1

}
, B1 =
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{
ω ∈ Ω : b1 ≤ dP̃

dP (ω) ≤ a1

}
, D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Similarly, let configuration X2 = xdIA2 +xIB2 +

xuID2 correspond to the pair (a2, b2). Define z1 = E[X1] and z2 = E[X2]. Since both X1 and X2 satisfy the

capital constraint, we have

xdP̃ (A1) + xP̃ (B1) + xuP̃ (D1) = xr = xdP̃ (A2) + xP̃ (B2) + xuP̃ (D2).

This simplifies to the equation

(11) (x− xd)P̃ (A2\A1) = (xu − x)P̃ (D2\D1).

Then

z2 − z1 = xdP (A2) + xP (B2) + xuP (D2)− xdP (A1)− xP (B1)− xuP (D1)

= (xu − x)P (D2\D1)− (x− xd)P (A2\A1)

= (xu − x)P (D2\D1)− (xu − x)
P̃ (D2\D1)
P̃ (A2\A1)

P (A2\A1)

= (xu − x)P̃ (D2\D1)
(

P (D2\D1)
P̃ (D2\D1)

− P (A2\A1)
P̃ (A2\A1)

)

= (xu − x)P̃ (D2\D1)


∫�

b1≤
dP̃
dP (ω)<b2

� dP
dP̃

(ω)dP̃ (ω)

P̃ (D2\D1)
−

∫�
a2<

dP̃
dP (ω)≤a1

� dP
dP̃

(ω)dP̃ (ω)

P̃ (A2\A1)


≥ (xu − x)P̃ (D2\D1)

(
1
b2
− 1

a2

)
> 0.

Suppose the pair (a1, b1) is chosen so that X1 satisfies the budget constraint Ẽ[X1] = xr. For any given

ε > 0, choose b2 − b1 small enough such that P (D2\D1) ≤ ε
xu−x . Now choose a2 such that a2 < a1 and

equation (11) is satisfied. Then X2 also satisfies the budget constraint Ẽ[X2] = xr, and

z2 − z1 = (xu − x)P (D2\D1)− (x− xd)P (A2\A1) ≤ (xu − x)P (D2\D1) ≤ ε.

We conclude that the expected value of the Three-Line configuration decreases continuously as b decreases

and a increases. �

Proof of Proposition 2.9. Denote ρ = dP̃
dP . According to Lemma 2.8, there exists a Three-Line configu-
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ration X̂ = xdIA + xIB + xuID that satisfies the General Constraints:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.

where

A = {ω ∈ Ω : ρ(ω) > â} , B =
{

ω ∈ Ω : b̂ ≤ ρ(ω) ≤ â
}

, D =
{

ω ∈ Ω : ρ(ω) < b̂
}

.

As standard for convex optimization problems, if we can find a pair of Lagrange multipliers λ ≥ 0 and µ ∈ R

such that X̂ is the solution to the minimization problem

(12) inf
X∈F, xd≤X≤xu

E[(x−X)+ − λX − µρX] = E[(x− X̂)+ − λX̂ − µρX̂],

then X̂ is the solution to the constrained problem

inf
X∈F, xd≤X≤xu

E[(x−X)+], s.t. E[X] ≥ z, Ẽ[X] = xr.

Define

λ =
b̂

â− b̂
, µ = − 1

â− b̂
.

Then (12) becomes

inf
X∈F, xd≤X≤xu

E
[
(x−X)+ + ρ−b̂

â−b̂
X
]
.

Choose any X ∈ F where xd ≤ X ≤ xu, and denote G = {ω ∈ Ω : X(ω) ≥ x} and L = {ω ∈ Ω : X(ω) < x}.
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Note that ρ−b̂

â−b̂
> 1 on set A, 0 ≤ ρ−b̂

â−b̂
≤ 1 on set B, ρ−b̂

â−b̂
< 0 on set D. Then the difference

E
[
(x−X)+ + ρ−b̂

â−b̂
X
]
− E

[
(x− X̂)+ + ρ−b̂

â−b̂
X̂
]

= E
[
(x−X)IL + ρ−b̂

â−b̂
X (IA + IB + ID)

]
− E

[
(x− xd) IA + ρ−b̂

â−b̂
(xdIA + xIB + xuID)

]
= E

[
(x−X)IL +

(
ρ−b̂

â−b̂
(X − xd)− (x− xd)

)
IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
≥ E

[
(x−X)IL + (X − x) IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩A + IL∩B + IL∩D) + (X − x) (IA∩G + IA∩L) + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) (IB∩G + IB∩L) + ρ−b̂

â−b̂
(X − xu) (ID∩G + ID∩L)

]
= E

[
(x−X)

(
1− ρ−b̂

â−b̂

)
IB∩L +

(
x−X + ρ−b̂

â−b̂
(X − xu)

)
ID∩L + (X − x) IA∩G

+ ρ−b̂

â−b̂
(X − x) IB∩G + ρ−b̂

â−b̂
(X − xu) ID∩G

]
≥ 0.

The last inequality holds because each term inside the expectation is greater than or equal to zero. �

Theorem 2.10 is a direct consequence of Lemma 2.6, Proposition 2.7, and Proposition 2.9.

Proof of Lemma 2.13. The convexity of v(x) is a simple consequence of its definition (4). Real-valued

convex functions on R are continuous on its interior of the domain, so v(x) is continuous on R. �

Proof of Proposition 2.14. Obviously, Case 2 dominates Case 1 in the sense that its minimum is

lower. In Case 3, by the continuity of v(x), we have

1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) ≤ 1
λ

((xz1 − xd)P (Axz1)− λxz1) = −xz1.

The last equality comes from the fact P (Axz1) = 0: As in Lemma 2.8, we know that when x = xz1, the Three-

Line configuration X = xdIA + xIB + xuID degenerates to the Two-Line configuration X = xz1IB + xuID
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where axz1 = ∞. Therefore, Case 3 dominates Case 2. In Case 5,

1
λ

inf
[xu,∞)

(v(x)− λx) =
1
λ

inf
[xu,∞)

(
(x− xd)P (Ā) + (x− xu)P (B̄)− λx

)
=

1
λ

inf
[xu,∞)

(
(1− λ)x− xdP (Ā)− xuP (B̄)

)
=

1
λ

(
(1− λ)xu − xdP (Ā)− xuP (B̄)

)
=

1
λ

(
(xu − xd)P (Ā)− λxu

)
≥ 1

λ
inf

[xz2,xu]
((x− xd)P (Ax)− λx) .

Therefore, Case 4 dominates Case 5. When x ∈ [xz2, xu] and ess sup dP̃
dP > 1

λ , Theorem 2.10 and Theorem

2.11 imply that the infimum in Case 4 is achieved either by X̄ or X∗. Since we restrict z ∈ (z∗, z̄] where

z∗ = z̄ by Definition 2.12 in the first case, we need not consider this case in the current proposition. In the

second case, Lemma 2.4 implies that x∗ < xz2 (because z > z∗). By the convexity of v(x), and then the

continuity of v(x),

1
λ

inf
[xz2,xu]

((x− xd)P (Ax)− λx) =
1
λ

((xz2 − xd)P (Axz2)− λxz2)

≥ 1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) .

Therefore, Case 3 dominates Case 4. We have shown that Case 3 actually provides the globally infimum:

1
λ

inf
x∈R

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

(v(x)− λx).

Now we focus on x ∈ (xz1, xz2), where X(x) = xdIAx + xIBx + xuIDx satisfies the general constraints:

E[X(x)] = xdP (Ax) + xP (Bx) + xuP (Dx) = z,

Ẽ[X(x)] = xdP̃ (Ax) + xP̃ (Bx) + xuP̃ (Dx) = xr,

and the definition for sets Ax, Bx and Dx are

Ax =
{

ω ∈ Ω : dP̃
dP (ω) > ax

}
, Bx =

{
ω ∈ Ω : bx ≤ dP̃

dP (ω) ≤ ax

}
, Dx =

{
ω ∈ Ω : dP̃

dP (ω) < bx

}
.

Note that v(x) = (x − xd)P (Ax) (see Theorem 2.10). Since P (Ax) + P (Bx) + P (Dx) = 1 and P̃ (Ax) +
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P̃ (Bx) + P̃ (Dx) = 1, we rewrite the capital and return constraints as

x− z = (x− xd)P (Ax) + (x− xu)P (Dx),

x− xr = (x− xd)P̃ (Ax) + (x− xu)P̃ (Dx).

Differentiating both sides with respect to x, we get

P (Bx) = (x− xd)
dP (Ax)

dx
+ (x− xu)

dP (Dx)
dx

,

P̃ (Bx) = (x− xd)
dP̃ (Ax)

dx
+ (x− xu)

dP̃ (Dx)
dx

.

Since
dP̃ (Ax)

dx
= ax

dP (Ax)
dx

,
dP̃ (Dx)

dx
= bx

dP (Dx)
dx

,

we get
dP (Ax)

dx
=

P̃ (Bx)− bP (Bx)
(x− xd)(a− b)

.

Therefore,

(v(x)− λx)′ = P (Ax) + (x− xd)
dP (Ax)

dx
− λ

= P (Ax) +
P̃ (Bx)− bP (Bx)

a− b
− λ.

When the above derivative is zero, we arrive to the first order Euler condition

P (Ax) +
P̃ (Bx)− bP (Bx)

a− b
− λ = 0.

To be precise, the above differentiation should be replaced by left-hand and right-hand derivatives as detailed

in the Proof for Corollary 2.8 in Li and Xu [8]. But the first order Euler condition will turn out to be the

same because we have assumed that the Radon-Nikodým derivative dP̃
dP has continuous distribution.

To finish this proof, we need to show that there exists an x ∈ (xz1, xz2) where the first order Euler

condition is satisfied. From Lemma 2.8, we know that as x ↘ xz1, ax ↗∞, and P (Ax) ↘ 0. Therefore,

lim
x↘xz1

(v(x)− λx)′ = −λ < 0.
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As x ↗ xz2, bx ↘ 0, and P (Dx) ↘ 0. Therefore,

lim
x↗xz2

(v(x)− λx)′ = P (Axz2)−
P̃ (Ac

xz2
)

axz2

− λ.

This derivative coincides with the derivative of the value function of the Two-Line configuration that is

optimal on the interval x ∈ [xz2, xu] provided in Theorem 2.10 (see Proof for Corollary 2.8 in Li and Xu [8]).

Again when x ∈ [xz2, xu] and ess sup dP̃
dP > 1

λ , Theorem 2.10 and Theorem 2.11 imply that the infimum of

v(x)− λx is achieved either by X̄ or X∗. Since we restrict z ∈ (z∗, z̄] where z∗ = z̄ by Definition 2.12 in the

first case, we need not consider this case in the current proposition. In the second case, Lemma 2.4 implies

that x∗ < xz2 (because z > z∗). This in turn implies

P (Axz2)−
P̃ (Ac

xz2
)

axz2

− λ < 0.

We have just shown that there exist some x∗∗ ∈ (xz1, xz2) such that (v(x)−λx)′|x=x∗∗ = 0. By the convexity

of v(x)− λx, this is the point where it obtains the minimum value. Now

CV aR(X∗∗) =
1
λ

(v(x∗∗)− λx∗∗)

=
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

�

Proof of Theorem 2.15. Case 3 and 4 are already proved in Theorem 2.11 and Proposition 2.14. In Case

1 where ess sup dP̃
dP ≤ 1

λ and z = xr, X = xr is both feasible and optimal by Theorem 2.11. In Case 2, fix

arbitrary ε > 0. We will look for a Two-Line solution Xε = xεIAε
+αεIBε

with the right parameters aε, xε, αε

which satisfies both the capital constraint and return constraint:

E[Xε] = xεP (Aε) + αεP (Bε) = z,(13)

Ẽ[Xε] = xεP̃ (Aε) + αεP̃ (Bε) = xr,(14)

where

Aε =
{

ω ∈ Ω : dP̃
dP (ω) > aε

}
, Bε =

{
ω ∈ Ω : dP̃

dP (ω) ≤ aε

}
,
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and produces a CVaR level close to the lower bound:

CV aR(Xε) ≤ CV aR(xr) + ε = −xr + ε.

First, we choose xε = xr − ε. To find the remaining two parameters aε and αε so that equations (13) and

(14) are satisfies, we note

xrP (Aε) + xrP (Bε) = xr,

xrP̃ (Aε) + xrP̃ (Bε) = xr,

and conclude that it is equivalent to find a pair of aε and αε such that the following two equalities are

satisfied:

−εP (Aε) + (αε − xr)P (Bε) = γ,

−εP̃ (Aε) + (αε − xr)P̃ (Bε) = 0,

where we denote γ = z − xr. If we can find a solution aε to the equation

(15)
P̃ (Bε)
P (Bε)

=
ε

γ + ε
,

then

αε = xr +
P̃ (Aε)
P̃ (Bε)

ε,

and we have the solutions for equations (13) and (14). It is not difficult to prove that the fraction P̃ (B)
P (B)

increases continuously from 0 to 1 as a increases from 0 to 1
λ . Therefore, we can find a solution aε ∈ (0, 1

λ )

where (15) is satisfied. By definition (3),

CV aRλ(Xε) =
1
λ

inf
x∈R

(
E[(x−Xε)+]− λx

)
≤ 1

λ

(
E[(xε −Xε)+]− λxε

)
= −xε.

The difference

CV aRλ(Xε)− CV aR(xr) ≤ −xε + xr = ε.

Under Assumption 1.1, the solution in Case 2 is almost surely unique, the result is proved. �
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Proof of Theorem 2.17. Case 1 and 3 are obviously true in light of Theorem 2.16. The proof for Case 2

is similar to that in the Proof of Theorem 2.15, so we will not repeat it here. Since E[X∗] = z∗ < z in case

4, CV aR(X∗) is only a lower bound in this case. We first show that it is the true infimum obtained in Case

4. Fix arbitrary ε > 0. We will look for a Three-Line solution Xε = xdIAε
+ xεIBε

+ αεIDε
with the right

parameters aε, bε, xε, αε which satisfies the general constraints:

E[Xε] = xdP (Aε) + xεP (Bε) + αεP (Dε) = z,(16)

Ẽ[Xε] = xdP̃ (Aε) + xεP̃ (Bε) + αεP̃ (Dε) = xr,(17)

where

Aε =
{

ω ∈ Ω : dP̃
dP (ω) > aε

}
, Bε =

{
ω ∈ Ω : bε ≤ dP̃

dP (ω) ≤ aε

}
, Dε =

{
ω ∈ Ω : dP̃

dP (ω) < bε

}
,

and produces a CVaR level close to the lower bound:

CV aR(Xε) ≤ CV aR(X∗) + ε.

First, we choose aε = a∗, Aε = A∗, xε = x∗ − δ, where we define δ = λ
λ−P (A∗)ε. To find the remaining two

parameters bε and αε so that equations (16) and (17) are satisfies, we note

E[X∗] = xdP (A∗) + x∗P (B∗) = z∗,

Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr,

and conclude that it is equivalent to find a pair of bε and αε such that the following two equalities are satisfied:

−δ(P (B∗)− P (Dε)) + (αε − x∗)P (Dε) = γ,

−δ(P̃ (B∗)− P̃ (Dε)) + (αε − x∗)P̃ (Dε) = 0,

where we denote γ = z − z∗. If we can find a solution bε to the equation

(18)
P̃ (Dε)
P (Dε)

=
P̃ (B∗)

γ
δ + P (B∗)

,
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then

αε = x∗ +

(
P̃ (B∗)
P̃ (Dε)

− 1

)
δ,

and we have the solutions for equations (16) and (17). It is not difficult to prove that the fraction P̃ (D)
P (D)

increases continuously from 0 to P̃ (B∗)
P (B∗) as b increases from 0 to a∗. Therefore, we can find a solution

bε ∈ (0, a∗) where (18) is satisfied. By definition (3),

CV aRλ(Xε) =
1
λ

inf
x∈R

(
E[(x−Xε)+]− λx

)
≤ 1

λ

(
E[(xε −Xε)+]− λxε

)
=

1
λ

(xε − xd)P (Aε)− xε.

The difference

CV aRλ(Xε)− CV aR(X∗) ≤ 1
λ

(xε − xd)P (Aε)− xε −
1
λ

(x∗ − xd)P (A∗) + x∗

=
1
λ

(x∗ − xd)(P (Aε)− P (A∗)) +
(

1− P (Aε)
λ

)
(x∗ − xε) = ε.

Under Assumption 1.1, the solution in Case 4 is almost surely unique, the result is proved. �

4 Future Work

In Assumption 1.1, we require the Radon-Nikodým derivative to have continuous distribution. When this

assumption is weakened, the results should still hold, albeit in a more complicated form. The out come

resembles in the form of results obtained in Li and Xu [8]. It will also be very interesting to extend this result

for CVaR minimization to minimizing Law-Invariant Risk Measures in general.
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