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Introduction

This is really a talk about “Markovian projection” or constructing
Markov mimicking processes.

Main point: It often possible to construction Markov processes
which mimick properties of more general non-Markovian processes.

This can be useful for a number of reasons.

1. Difficult and expensive to compute with non-Markovian
models or models of large dimension

2. To determine the correct “nonparametric form” for a given
application

3. As a tool to understand the general model (calibration)
application (which models allow “perfect calibration”)



Introduction

Local volatility is a “mimicking result.”

Consider a linear pricing model where the risk-neutral dynamics of
the stock price are given by

dSt = σt St dWt,

for some process σ.

There is often is local volatility model where the risk neutral
dynamics of the stock price are given by:

dŜt = σ̂(t, Ŝt) Ŝt dWt

with the same European option prices.



Local Volatility

Why are local volatility models attractive?

I simple dynamics

I low dimensional Markov process

I general enough to allow for “perfect calibration” to wide
range of option prices

I “Markovian projection” - one can use the local volatility
model to characterize the set models consistent with a given
set of prices



The local volatility function σ̂.

I Dupire (1994) as well as Derman & Kani (1994)

σ̂2(t, x) =
∂

∂T C(t, x)
1
2x

2 ∂2

∂K2C(t, x)

I Gyöngy (1986), Derman & Kani (1998) as well as
Britten-Jones & Neuberger (2000). If

σ̂2(t, x) = E
[
σ2

t

∣∣ St = x
]
,

then dŜt = σ̂(t, Ŝt) Ŝt dWt has the some one-dimensional
marginal distributions as dSt = σt St dWt.



Local Volatility

The relationship between

I European option prices and the

I 1-dimensional risk-neutral marginals of the underlying asset

has been understood since at least Breeden and Litzenberger
(1978).

If C(T,K) denotes the price of a European call option with
maturity T and strike K and p(t, x) = P[St ∈ dx], then

∂2

∂K2
C(T,K) =

∂2

∂K2

∫
(x−K)+p(T, x) dx

=
∫
δ(x−K) p(T, x) dx

= p(T,K)



Krylov (1984) and Gyöngy (1986)

Theorem
Let W be an Rr-valued Brownian motion, and let X solve

dXt = µs ds+ σs dWs,

where

1. µ is a bounded, Rd-valued, adapted process, and

2. σ is a bounded, Rd×r-valued, adapted process such that σσT

is uniformly positive definite (i.e., there exists λ. > 0 with
xTσtσ

T
t x ≥ λ‖x‖ for all t ∈ R+ and x ∈ Rd).



Krylov (1984) and Gyöngy (1986)

Theorem
If the conditions on the last slide are met by

dXt = µs ds+ σs dWs,

then there exists a weak solution to the SDE:

dX̂t = µ̂(t, X̂t) dt+ σ̂(t, X̂t) dŴt

where

1. µ̂(t,Xt) = E[µt | Xt] for Lebesgue-a.e. t,

2. σ̂ σ̂T(t,Xt) = E[σt σ
T
t | Xt] for Lebesgue-a.e. t, and

3. X̂t has the same distribution as Xt for each fixed t.



General Mimicking Results

1. Given a (non-Markov) Ito process it is possible to find a
mimicking process which preserves the distributions of a
number of running statistics about the process.

2. If futher technical conditions are met, the mimicking Itô
process “drives” a Markov process whose dimension is equal
to the number of running statistics.

3. To understand the kinds of running statistics that can be
preserved, we need to introduce the notion of an updating
function.



Some Notation

We let C0(R+; Rd) denotes the paths in C(R+; Rd) that start at
zero, and we let

∆ : C(R+,Rd)×R+ → C0(R+,Rd)

denote the map such that

∆u(x, t) = x(t+ u)− x(t)

So ∆(x, t) is the path in C0(R+,Rd) that corresponds to the
changes x after the time t.



Updating Functions

Definition
Let E be a Polish space, and let Φ : E×C0(R+; Rd)→ C(R+; E)
be a function. We say that Φ is an updating function if

1. x(s) = y(s) for all s ∈ [0, t] implies that Φs(e, x) = Φs(e, y)
for all s ∈ [0, t], and

2. Φt+u(e, x) = Φu

(
Φt(e, x),∆(x, t)

)
∀t, u ∈ R+.

If Φ is also continuous as map from E×C0(R+; Rd) to C(R+; E),
then we say that Φ is a continuous updating function.



Example: Process Itself

A trivial updating function: take E = Rd, and

Φ(e, x) = e+ x, e ∈ Rd, x ∈ Cd
0 ,

so Xt = Φt

(
X0,∆(X, t)

)
.

The updating property reads

Xt+u = Xt + ∆u(X, t)

So Φt+u is function of Φt and ∆(X, t).



Example: Process and Running Max

Let E = {(x,m) ∈ R2 : x ≤ m}.
x Process position

m Maximum-to-date

Given x,m ∈ E and changes y ∈ C0(R+; Rd), we update the
current location and current maximum-to-date by:

Φt(x,m; y) =
(
x+ y(t), m ∨ max

0≤s≤t

(
x+ y(s)

))
.



Example: Process and Running Max

If we take Mt = maxs≤tXt, then we have

Φt

(
X0, X0; ∆(X, 0)

)
= (Xt,Mt)

The second property in the definition of updating function
amounts to

(Xt+u,Mt+u) =
(
Xt + ∆u(X, t),

Mt ∨max
s≤u

(
Xt + ∆s(X, t)

))
So Φt+u is function of Φt and ∆(X, t).



Example: Entire History

Take

E =
{

(x, s) ∈ C(R+; Rd)× R+;x is constant on [s,∞)
}
.

Given an initial path segment (x, s) ∈ E and changes
y ∈ C0(R+; Rd), let (x, s)⊕ y denote the path obtained by
appending y to x after time s:

(
(x, s)⊕ y

)
(t) =

{
x(t) if t ≤ s, and

x(s) + y(t− s) if t > s.

Then Φt(x, s; y) =
(
(x, s)⊕ yt, s+ t

)
is an updating function,

where yt is the path y stopped at time t.



Example: Entire History

With

E =
{

(x, s) ∈ C(R+; Rd)× R+;x is constant on [s,∞)
}
, and

Φt(x, s; y) =
(
(x, s)⊕ yt, s+ t

)
,

we have Φt(X0, 0; ∆(X, 0)) = (Xt, t), so Φ tracks the whole path
history.

The updating property amounts to

(Xt+u, t+ u) =
(
(Xt, t)⊕∆u(X, t), t+ u

)
,

so again Φt+u is a function of Φt and ∆(X, t).



General Mimicking Result (B. and Shreve)

Let Y be a Rd-valued process with

Yt ,
∫ t

0
µs ds+

∫ t

0
σs dWs,

where W be an Rr-valued B.M. and µ and σ be an adapted
processes with

E
[ ∫ t

0
‖µs‖+ ‖σsσ

T
s ‖ ds

]
<∞ ∀t ∈ R+, (1)

Let E be a Polish space, and let Z be a continuous, E-valued
process with Z = Φ(Z0, Y ) for some continuous updating function
Φ.

(Z tracks the running statistics of Y that we care about.)



General Mimicking Result (B. and Shreve)

Then there exists a weak solution to the stochastic system

Ŷt =
∫ t

0
µ̂(s, Ẑs) dt+

∫ t

0
σ̂(s, Ẑs) dŴs, and

Ẑt = Φ(Ẑ0, Ŷ ),

where

1. µ̂(t, z) = E[µt |Zt = z ] a.e. t,

2. σ̂σ̂T (t, z) = E[σt σ
T
t |Zt = z ], a.e. t, and

3. Ẑt has the same law as Zt for each t.



Corollary: Process Itself

Suppose X solves
dXt = µtdt+ σtdWt

and the integrability condition (1) is satisfied.

Then there exists a weak solution to

dX̂t = µ̂(t, X̂t)dt+ σ̂(t, X̂t)dWt

where

1. µ̂(t, x) = E[µt |Xt = x] a.e. t,

2. σ̂σ̂T (t, x) = E[σt σ
T
t |Xt = x], a.e. t, and

3. X̂t has the same law as Xt for each t.



Corollary: Process and Running Max

Suppose X solves
dXt = µtdt+ σtdWt,

Mt = sups≤tXs, and the integrability condition (1) is satisfied.

Then there exists a weak solution to

dX̂t = µ̂(t, X̂t, M̂t)dt+ σ̂(t, X̂t, M̂t)dŴt,

M̂t = max
s≤t

X̂t,

where

1. µ̂(t, x,m) = E[µt |Xt,Mt = x,m] a.e. t,

2. σ̂σ̂T (t, x,m) = E[σt σ
T
t |Xt,Mt = x,m], a.e. t, and

3. (X̂t, M̂t) has the same law as (Xt,Mt) for each t.



Main Idea of Proof

Let S be an Itô process S that solves dSt = σt St dWt.

We construct processes S1, S2, and S3 on some space with
L (S1) = L (S2) = L (S3) = L (S).

We then piece these processes together to form a process S̃ with
L (S̃t) = L (St) for all t.



Main Idea of Proof

Suppose S solves dSt = σt St dWt.



Main Idea of Proof

Let L (S1) = L (S).



Main Idea of Proof

Forget everything about S1 except S1
t1

.



Main Idea of Proof

Let L (S2 | S1
t1

) = L (S | St1 =S1
t1

).



Main Idea of Proof

Let L (S2 | S1
t1

) = L (S | St1 =S1
t1

).

Taking any measurable A ⊂ C(R+; R), notice that

P[S2 ∈ A] =

∫
R

P[S2 ∈ A |S1
t1

= x] P[S1
t1
∈ dx]

=

∫
R

P[S ∈ A |St1 = x] P[St1 ∈ dx]

= P[S ∈ A].

In particular, S2 is distributed according to L (S).



Main Idea of Proof

Let L (S2 | S1
t1

) = L (S | St1 =S1
t1

).



Main Idea of Proof

Forget everything about S2 except S2
t2

.



Main Idea of Proof

Let L (S3 | S1
t2

) = L (S | St2 =S1
t2

).



Main Idea of Proof

Set Ŝ , S1 1[0,t1) + S2 1[t1,t2) + S3 1[t2,∞).



Main Idea of Proof

This still works when we track additional information.



Main Idea of Proof

Let L (S1) = L (S).



Main Idea of Proof

Forget everything about S1 except S1
t1

and M1
t1

.



Main Idea of Proof

Let L (S2 | S1
t1
,M1

t1
) = L (S | St1 =S1

t1
,Mt1 =M1

t1
).



Main Idea of Proof

Set S̃ , S1 1[0,t1) + S2 1[t1,∞).



General Mimicking Result (B. and Shreve)

Then there exists a weak solution to the stochastic system

Ŷt =
∫ t

0
µ̂(s, Ẑs) dt+

∫ t

0
σ̂(s, Ẑs) dŴs, and

Ẑt = Φ(Ẑ0, Ŷ ),

where

1. µ̂(t, z) = E[µt |Zt = z ] a.e. t,

2. σ̂σ̂T (t, z) = E[σt σ
T
t |Zt = z ], a.e. t, and

3. Ẑt has the same law as Zt for each t.



Example: Barrier Options

Definition
Given an exercise time, T , an upper barrier, U , and strike, K, the
holder of an up-and-out call option has the right to exercise a
call option at time T with strike K if the stock price has remained
below the barrier U . If the stock price crosses the barrier, the
option becomes worthless.

Calibration Problem
Given a collection {B(T,U,K)}T,U,K of prices for up-and-out call
options, we would like to construct a linear pricing model which is
consistent with these prices.



Example: Barrier Options

Previous results suggest that we may want to look for a
(risk-neutral) model of the form:

dSt = σ(t, St,Mt)St dWt

Mt = max
s≤t

St,

with σ choosen so that

E
[
1{MT≤U} (ST −K)+

]
= B(T, L,K).



Dupire Formula

Formally, we may recover σ from the prices of corridor options with
a Dupire-type formula.

B(T,K,U) = EQ[1{MT≤U}(ST −K)+
]

∂ B(T,K,U)
∂U

= EQ[δU (MT )(ST −K)+
]

∂2 B(T,K,U)
∂T∂U

= EQ[1
2σ

2(T,K,U)K2δU (MT )δK(ST )+
]

∂3 B(T,K,U)
∂K2∂U

= EQ[δU (MT )δK(St)
]

So

σ2(T,K,U) =
2∂2B(T,K,U)/∂T∂U
∂3B(T,K,U)/∂K2∂U



Markov Property

Theorem
Let E be a Polish space and let Φ be a continuous updating
function Φ.

Consider the stochastic differential equation:

Ŷt =
∫ t

t0

µ̂(s, Ẑs) dt+
∫ t

t0

σ̂(s, Ẑs) dŴs, and

Ẑt = Φ(Ẑt0 , Ŷ ).

If weak uniqueness holds for each initial condition Zt0 = z0 ∈ E ,
then the process Z is strong Markov.



Markov Property

Corollary

Suppose σ is Lipshitz continuous, then weak uniqueness holds for
the stochastic differential equation

dSt = σ(t, St,Mt) dWt

Mt = max
s≤t

St,

and the process Z = (S,M) is strong Markov.



Conclusions

I It is often possible to construct reduced form models which
preserve the prices of path-dependent options.

I Weak uniqueness results allow one to conclude that the
reduced form models are Markov.



Open Question?

Let σ be continuous with 1/C ≤ σ ≤ C for some constant C. Is
this sufficient to ensure weak uniqueness for the stochastic
differential equation:

dXt = σ(t,Xt,Mt) dWt

Mt = max
s≤t

Xt?
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