Hybrid Atlas Model
of financial equity market

Tomoyuki Ichiba ¹ Ioannis Karatzas ²,³ Adrian Banner ³
Vassilios Papathanakos ³ Robert Fernholz ³

¹ University of California, Santa Barbara ² Columbia University, New York
³ INTECH, Princeton

November 2009
Outline

Introduction

Hybrid Atlas model
 Martingale Problem
 Stability
 Effective dimension
 Rankings
 Long-term growth relations

Portfolio analysis
 Stochastic Portfolio Theory
 Target portfolio
 Universal portfolio

Conclusion
Flow of Capital

Figure: Capital Distribution Curves (Percentage) for the S&P 500 Index of 1997 (Solid Line) and 1999 (Broken Line).
Figure: Capital distribution curves for 1929 (shortest curve) - 1999 (longest curve), every ten years. Source Fernholz('02).

What kind of models can describe this long-term stability?
A Model of Rankings [Hybrid Atlas model]

- Capital process \(X := \{(X_1(t), \ldots, X_n(t)) \, ; \, 0 \leq t < \infty \} \).
- Order Statistics:

\[
X(1)(t) \geq \cdots \geq X(n)(t) ; \quad 0 \leq t < \infty .
\]

Log capital \(Y := \log X \):

\[
Y(1)(t) \geq \cdots \geq Y(n)(t) ; \quad 0 \leq t < \infty .
\]

Dynamics of log capital:

\[
d Y_{(k)}(t) = (\gamma + \gamma_i + g_k) \, dt + \sigma_k \, d W_i(t) \quad \text{if} \quad Y_{(k)}(t) = Y_i(t) ;
\]

for \(1 \leq i, k \leq n, \ 0 \leq t < \infty \), where \(W(\cdot) \) is \(n \)-dim. B. M.

<table>
<thead>
<tr>
<th>Drift ("mean")</th>
<th>company name (i)</th>
<th>(k) th ranked company</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_i)</td>
<td>(\gamma_i)</td>
<td>(g_k)</td>
</tr>
<tr>
<td>(\sigma_k)</td>
<td>(\sigma_k > 0)</td>
<td></td>
</tr>
</tbody>
</table>

* Banner, Fernholz & Karatzas ('05), Chatterjee & Pal ('07, '09), Pal & Pitman ('08).
A Model of Rankings [Hybrid Atlas model]

- Capital process \(X := \{(X_1(t), \ldots, X_n(t)) : 0 \leq t < \infty \} \).
- Order Statistics:
 \[
 X(1)(t) \geq \cdots \geq X(n)(t) ; \quad 0 \leq t < \infty .
 \]

Log capital \(Y := \log X : \)
 \[
 Y(1)(t) \geq \cdots \geq Y(n)(t) ; \quad 0 \leq t < \infty .
 \]

Dynamics of log capital:
\[
d Y(k)(t) = (\gamma + \gamma_i + g_k) dt + \sigma_k d W_i(t) \quad \text{if} \quad Y(k)(t) = Y_i(t) ;
\]
for \(1 \leq i, k \leq n, 0 \leq t < \infty \), where \(W(\cdot) \) is \(n \)-dim. B. M.

<table>
<thead>
<tr>
<th>Drift ("mean")</th>
<th>company name (i)</th>
<th>(k)th ranked company *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion ("variance")</td>
<td>(\gamma_i)</td>
<td>(g_k)</td>
</tr>
</tbody>
</table>

\(\sigma_k > 0 \)

* Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08).
A Model of Rankings [Hybrid Atlas model]

- Capital process $X := \{ (X_1(t), \ldots, X_n(t)) \mid 0 \leq t < \infty \}$.

- Order Statistics:

 $X_{(1)}(t) \geq \cdots \geq X_{(n)}(t) ; \ 0 \leq t < \infty$.

- Log capital $Y := \log X$:

 $Y_{(1)}(t) \geq \cdots \geq Y_{(n)}(t) ; \ 0 \leq t < \infty$.

Dynamics of log capital:

$$d Y_{(k)}(t) = (\gamma + \gamma_i + g_k) \, dt + \sigma_k \, d W_i(t) \quad \text{if } Y_{(k)}(t) = Y_i(t) ;$$

for $1 \leq i, k \leq n, \ 0 \leq t < \infty$, where $W(\cdot)$ is n–dim. B. M.

<table>
<thead>
<tr>
<th>company name i</th>
<th>kth ranked company \ast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift (“mean”)</td>
<td>γ_i</td>
</tr>
<tr>
<td>Diffusion (“variance”)</td>
<td>g_k</td>
</tr>
<tr>
<td></td>
<td>$\sigma_k > 0$</td>
</tr>
</tbody>
</table>

\ast Banner, Fernholz & Karatzas ('05), Chatterjee & Pal ('07, '09), Pal & Pitman ('08).
Illustration \((n = 3)\) of interactions through rank

Paths in \(\mathbb{R}_+ \times \text{Time}\). A path in different wedges of \(\mathbb{R}^n\).

Symmetric group \(\Sigma_n\) of permutations of \(\{1, \ldots, n\}\).
For \(n = 3\),
\(\{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}\).
Illustration \((n = 3)\) of interactions through rank

Paths in \(\mathbb{R}_+ \times \text{Time}\). A path in different wedges of \(\mathbb{R}^n\).

Symmetric group \(\Sigma_n\) of permutations of \(\{1, \ldots, n\}\).

For \(n = 3\),
\[\{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}\.]
Vector Representation

\[d Y(t) = G(Y(t))d t + S(Y(t))dW(t) ; \quad 0 \leq t < \infty \]

\[\Sigma_n : \text{symmetric group of permutations of } \{1, 2, \ldots, n\}. \]

For \(p \in \Sigma_n \) define wedges (chambers)

\[\mathcal{R}_p := \{ x \in \mathbb{R}^n : x_p(1) \geq x_p(2) \geq \cdots \geq x_p(n) \} , \quad \mathbb{R}^n = \bigcup_{p \in \Sigma_n} \mathcal{R}_p , \]

(the inner points of \(\mathcal{R}_p \) and \(\mathcal{R}_{p'} \) are disjoint for \(p \neq p' \in \Sigma_n \)),

\[Q_k^{(i)} := \{ x \in \mathbb{R}^n : x_i \text{ is ranked } k\text{th among } (x_1, \ldots, x_n) \} \]
\[= \bigcup \{ p : p(k) = i \} \mathcal{R}_p ; \quad 1 \leq i, k \leq n , \]

\[\bigcup_{j=1}^n Q_k^{(j)} = \mathbb{R}^n = \bigcup_{\ell=1}^n Q_\ell^{(i)} \text{ and } \mathcal{R}_p = \cap_{k=1}^n Q_k^{(p(k))} . \]

\[G(y) = \sum_{p \in \Sigma_n} (g_{p^{-1}(1)} + \gamma_1 + \gamma, \ldots, g_{p^{-1}(n)} + \gamma_n + \gamma)' \cdot 1_{\mathcal{R}_p}(y) , \]

\[S(y) = \sum_{p \in \Sigma_n} \text{diag}(\sigma_{p^{-1}(1)}, \ldots, \sigma_{p^{-1}(n)}) \cdot 1_{\mathcal{R}_p}(y) ; \quad y \in \mathbb{R}^n . \]
Vector Representation

\[d \ Y(t) = G(Y(t)) \, dt + S(Y(t)) \, dW(t); \quad 0 \leq t < \infty \]

\(\Sigma_n \): symmetric group of permutations of \{1, 2, \ldots, n\}.

For \(p \in \Sigma_n \) define wedges (chambers)

\[R_p := \{ x \in \mathbb{R}^n : x_{p(1)} \geq x_{p(2)} \geq \cdots \geq x_{p(n)} \}, \quad \mathbb{R}^n = \bigcup_{p \in \Sigma_n} R_p, \]

(the inner points of \(R_p \) and \(R_{p'} \) are disjoint for \(p \neq p' \in \Sigma_n \)),

\[Q^{(i)}_k := \{ x \in \mathbb{R}^n : x_i \text{ is ranked } k \text{th among } (x_1, \ldots, x_n) \} \]

\[= \bigcup \{ p : p(k) = i \} \, R_p; \quad 1 \leq i, k \leq n, \]

\[\bigcup_{j=1}^n Q^{(j)}_k = \mathbb{R}^n = \bigcup_{\ell=1}^n Q^{(\ell)}_k \quad \text{and} \quad R_p = \bigcap_{k=1}^n Q^{(p(k))}_k. \]

\[G(y) = \sum_{p \in \Sigma_n} \left(g_{p^{-1}(1)} + \gamma_1 + \gamma, \ldots, g_{p^{-1}(n)} + \gamma_n + \gamma \right)' \cdot 1_{R_p}(y), \]

\[S(y) = \sum_{p \in \Sigma_n} \text{diag}(\sigma_{p^{-1}(1)}, \ldots, \sigma_{p^{-1}(n)}) \cdot 1_{R_p}(y); \quad y \in \mathbb{R}^n. \]
Theorem [Krylov('71), Stroock & Varadhan('79), Bass & Pardoux('87)] Suppose that the coefficients $G(\cdot)$ and $a(\cdot) := SS'(\cdot)$ are bounded and measurable, and that $a(\cdot)$ is uniformly positive-definite and piecewise constant in each wedge. For each $y_0 \in \mathbb{R}^n$ there is a unique one probability measure \mathbb{P} on $C([0, \infty), \mathbb{R}^n)$ such that $\mathbb{P}(Y_0 = y_0) = 1$ and

$$f(Y_t) - f(Y_0) - \int_0^t L f(Y_s) \, ds; \quad 0 \leq t < \infty$$

is a \mathbb{P} local martingale for every $f \in C^2(\mathbb{R}^2)$ where

$$L f(x) = \frac{1}{2} \sum_{i,j=1}^n a_{ij}(x) D_{ij} f(x) + \sum_{i=1}^n G_i(x) D_i f(x); \quad x \in \mathbb{R}^n.$$

This implies that the hybrid Atlas model is well-defined.
Market capitalization X follows Hybrid Atlas model: the log capitalization $Y_i = \log X_i$ of company i has

$$d Y_i(t) = \left(\gamma + \sum_{k=1}^{n} g_k 1_{Q_k(i)}(Y(t)) + \gamma_i \right) d t$$

$$+ \sum_{k=1}^{n} \sigma_k 1_{Q_k(i)}(Y(t)) d W_i(t); \quad 0 \leq t < \infty .$$
Model assumptions

Market capitalization X follows Hybrid Atlas model: the log capitalization $Y_i = \log X_i$ of company i has

$$\text{drift } \gamma + g_k + \gamma_i \text{ and volatility } \sigma_k,$$

when company i is k^{th} ranked, i.e., $Y \in Q_k^{(i)}$ for $1 \leq k, i \leq n$. Assume $\sigma_k > 0$, $(g_k, 1 \leq k \leq n)$, $(\gamma_i, 1 \leq i \leq n)$ and γ are real constants with stability conditions

$$\sum_{k=1}^{n} g_k + \sum_{i=1}^{n} \gamma_i = 0, \quad \sum_{\ell=1}^{k} (g_\ell + \gamma_{p(\ell)}) < 0, \quad k = 1, \ldots, n-1, \ p \in \Sigma_n.$$

- $\gamma_i = 0, 1 \leq i \leq n$, $g_1 = \cdots = g_{n-1} = -g < 0$, $g_n = (n-1)g > 0$.
- $\gamma_i = 1 - (2i)/(n+1), 1 \leq i \leq n$, $g_k = -1, k = 1, \ldots, n-1, g_n = n - 1$.
Model assumptions

Market capitalization X follows Hybrid Atlas model: the log capitalization $Y_i = \log X_i$ of company i has

$$\text{drift } \gamma + g_k + \gamma_i \text{ and volatility } \sigma_k,$$

when company i is k^{th} ranked, i.e., $Y \in Q_k^{(i)}$ for $1 \leq k, i \leq n$. Assume $\sigma_k > 0$, $(g_k, 1 \leq k \leq n)$, $(\gamma_i, 1 \leq i \leq n)$ and γ are real constants with stability conditions

$$\sum_{k=1}^{n} g_k + \sum_{i=1}^{n} \gamma_i = 0, \quad \sum_{k}^{k} (g_\ell + \gamma_p(\ell)) < 0, \quad k = 1, \ldots, n-1, \ p \in \Sigma_n.$$

$\gamma_i = 0, 1 \leq i \leq n, \quad g_1 = \cdots = g_{n-1} = -g < 0, \quad g_n = (n-1)g > 0.$

$\gamma_i = 1 - (2i)/(n+1), 1 \leq i \leq n, \quad g_k = -1, k = 1, \ldots, n-1, \ g_n = n-1.$
Model assumptions

Market capitalization \(X \) follows Hybrid Atlas model: the log capitalization \(Y_i = \log X_i \) of company \(i \) has

\[
\text{drift } \gamma + g_k + \gamma_i \text{ and volatility } \sigma_k,
\]

when company \(i \) is \(k\text{-th} \) ranked, i.e., \(Y \in Q_k^{(i)} \) for \(1 \leq k, i \leq n \). Assume \(\sigma_k > 0 \), \((g_k, 1 \leq k \leq n)\), \((\gamma_i, 1 \leq i \leq n)\) and \(\gamma \) are real constants with stability conditions

\[
\sum_{k=1}^{n} g_k + \sum_{i=1}^{n} \gamma_i = 0, \quad \sum_{\ell=1}^{k} (g_\ell + \gamma_{p(\ell)}) < 0, \quad k = 1, \ldots, n-1, \quad p \in \Sigma_n.
\]

\(\triangleright \) \(\gamma_i = 0 \), \(1 \leq i \leq n \), \(g_1 = \cdots = g_{n-1} = -g < 0 \),
\(g_n = (n-1)g > 0 \).

\(\triangleright \) \(\gamma_i = 1 - (2i)/(n+1) \), \(1 \leq i \leq n \),
\(g_k = -1 \), \(k = 1, \ldots, n-1 \), \(g_n = n - 1 \).
Model Summary

The log-capitalization $Y = \log X$ follows

$$d Y_i(t) = \left(\gamma + \sum_{k=1}^{n} g_k 1_{Q_k(i)}(Y(t)) + \gamma_i \right) dt$$

$$+ \sum_{k=1}^{n} \sigma_k 1_{Q_k(i)}(Y(t))d W_i(t); \quad 0 \leq t < \infty$$

where $\sigma_k > 0$, $(g_k, 1 \leq k \leq n)$, $(\gamma_i, 1 \leq i \leq n)$ and γ are real constants with stability conditions

$$\sum_{k=1}^{n} g_k + \sum_{i=1}^{n} \gamma_i = 0, \quad \sum_{\ell=1}^{k} (g_\ell + \gamma_{p(\ell)}) < 0, \quad k = 1, \ldots, n-1, \quad p \in \Sigma_n.$$
Stochastic stability

The average $\bar{Y}(\cdot) := \sum_{i=1}^{n} Y_i(\cdot) / n$ of log-capitalization:

$$d\bar{Y}(t) = \gamma \, dt + \frac{1}{n} \sum_{k=1}^{n} \sigma_k \sum_{i=1}^{n} 1_{Q_k}^{(i)}(Y(t)) \, dW_i(t)$$

is a Brownian motion with variance rate $\sum_{k=1}^{n} \sigma_k^2 / n^2$ drift γ by the Dambis-Dubins-Schwartz Theorem.

Proposition Under the assumptions the deviations $\tilde{Y}(\cdot) := (Y_1(\cdot) - \bar{Y}(\cdot), \ldots, Y_n(\cdot) - \bar{Y}(\cdot))$ from the average are stable in distribution, i.e., there is a unique invariant probability measure $\mu(\cdot)$ such that for every bounded, measurable function f we have the Strong Law of Large Numbers

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} f(\tilde{Y}(t)) \, dt = \int_{\Pi} f(y) \mu(dy), \quad \text{a.s.}$$

where $\Pi := \{y \in \mathbb{R}^n : y_1 + \cdots + y_n = 0\}$.
Stochastic stability

The average $\overline{Y}(\cdot) := \sum_{i=1}^{n} Y_i(\cdot) / n$ of log-capitalization:

$$d\overline{Y}(t) = \gamma \, dt + \frac{1}{n} \sum_{k=1}^{n} \sigma_k \sum_{i=1}^{n} 1_{Q_k}^{(i)}(Y(t)) d W_i(t) + dB_k(t)$$

is a Brownian motion with variance rate $\sum_{k=1}^{n} \sigma_k^2 / n^2$ drift γ by the Dambis-Dubins-Schwartz Theorem.

Proposition Under the assumptions the deviations $\tilde{Y}(\cdot) := (Y_1(\cdot) - \overline{Y}(\cdot), \ldots, Y_n(\cdot) - \overline{Y}(\cdot))$ from the average are stable in distribution, i.e., there is a unique invariant probability measure $\mu(\cdot)$ such that for every bounded, measurable function f we have the Strong Law of Large Numbers

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(\tilde{Y}(t)) \, dt = \int_\Pi f(y) \mu(dy), \quad a.s.$$

where $\Pi := \{y \in \mathbb{R}^n : y_1 + \cdots + y_n = 0\}$.
Average occupation times

Especially taking \(f(\cdot) = 1_{\mathcal{R}_p}(\cdot) \) or \(1_{Q_k^{(i)}}(\cdot) \), we define from \(\mu \) the average occupation time of \(X \) in \(\mathcal{R}_p \) or \(Q_k^{(i)} \):

\[
\theta_p := \mu(\mathcal{R}_p) = \lim_{T \to \infty} \frac{1}{T} \int_0^T 1_{\mathcal{R}_p}(X(t)) \, dt \\
\theta_{k,i} := \mu(Q_k^{(i)}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T 1_{Q_k^{(i)}}(X(t)) \, dt , \quad 1 \leq k, i \leq n ,
\]

since \(1_{\mathcal{R}_p}(\tilde{Y}(\cdot)) = 1_{\mathcal{R}_p}(X(\cdot)) \) and \(1_{Q_k^{(i)}}(X(\cdot)) = 1_{Q_k^{(i)}}(\tilde{Y}(\cdot)) \). By definition

\[
\uparrow \quad 0 \leq \theta_{k,i} = \sum_{\{p \in \Sigma_n : p(k) = i\}} \theta_p \leq 1 \quad \text{for} \quad 1 \leq k, i \leq n ,
\]

\[
\uparrow \quad \sum_{\ell=1}^n \theta_{\ell,i} = \sum_{j=1}^n \theta_{k,j} = 1 \quad \text{for} \quad 1 \leq k, i \leq n .
\]

What is the invariant distribution \(\mu \)?
Attainability

- One-dimensional Brownian motion attains the origin infinitely often.
- Two-dimensional Brownian motion does not attain the origin.

Does the process \(X(\cdot) \) attain the origin?

\[
X(t) = X(0) + \int_0^t b(X(s)) \, ds + \int_0^t \sigma(X(s)) \, dW(s)
\]

where \(b \) and \(\sigma \) are bounded measurable functions.

- Friedman('74), Bass & Pardoux('87).
Effective Dimension

Let us define *effective dimension* $ED(\cdot)$ by

$$ED(x) = \frac{\text{trace}(A(x))\|x\|^2}{x'A(x)x}; \quad x \in \mathbb{R}^n \setminus \{0\},$$

where $A(\cdot) = \sigma(\cdot)\sigma(\cdot)'$.

Proposition

Suppose $X(0) \neq 0$.

If $\inf_{x \in \mathbb{R}^n \setminus \{0\}} ED(x) \geq 2$, then $X(\cdot)$ does not attain the origin.

If $\sup_{x \in \mathbb{R}^n \setminus \{0\}} ED(x) < 2$ and if there is no drift, i.e., $b(\cdot) \equiv 0$, then $X(\cdot)$ attains the origin.

- Exterior Dirichlet Problem by Meyers and Serrin('60).
- Removal of drift by Girsanov’s theorem.
- If there is drift, take $\frac{[\text{trace}(A(x)) + x'b(x)]\cdot\|x\|^2}{x'A(x)x}$.
Now consider *triple collision*:

\[\{ X_i(t) = X_j(t) = X_k(t) \text{ for some } t > 0, \ 1 \leq i < j < k \leq n \} . \]

What is the probability of triple collision?

Fix \(i = 1, j = 2, k = 3 \). Let us define the sum of squared distances:

\[s^2(x) := (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2 = x'^{\top} D D' x ; \quad x \in \mathbb{R}^n , \]

where \((n \times 3)\) matrix \(D \) is defined by \(D := (d_1, d_2, d_3) \) with

\[
\begin{align*}
 d_1 &:= (1, -1, 0, \ldots, 0)' , \\
 d_2 &:= (0, 1, -1, 0, \ldots, 0)' , \\
 d_3 &:= (-1, 0, 1, \ldots, 0)' .
\end{align*}
\]

\(\mathcal{Z} := \{ x \in \mathbb{R}^n : s(x) = 0 \} . \)
Define the local effective dimension:

\[R(x) := \frac{\text{trace}(D' A(x) D) \cdot x' DD' x}{x' DD' A(x) DD' x}; \quad x \in \mathbb{R}^n \setminus \mathbb{Z}. \]

Proposition

Suppose \(s(X(0)) \neq 0 \). If \(\inf_{x \in \mathbb{R}^n \setminus \mathbb{Z}} R(x) \geq 2 \), then

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 0. \]

If \(\sup_{x \in \mathbb{R}^n \setminus \mathbb{Z}} R(x) < 2 \) and if there is no drift, i.e., \(b(\cdot) \equiv 0 \), then

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 1. \]

- \(R(\cdot) \equiv 2 \) for \(n \)-dim. BM, i.e., \(A(\cdot) \equiv I \).
- If there is drift, take \(\frac{[\text{trace}(D' A(x) D) + x' DD' b(x)] \cdot x' DD' x}{x' DD' A(x) DD' x} \).

Idea of Proof: a comparison with Bessel process with dimension two.
Define the local effective dimension:

\[R(x) := \frac{\text{trace}(D'A(x)D) \ x' DD'x}{x' DD' A(x) DD'x}; \quad x \in \mathbb{R}^n \setminus \mathcal{Z}. \]

Proposition

Suppose \(s(X(0)) \neq 0 \). *If* \(\inf_{x \in \mathbb{R}^n \setminus \mathcal{Z}} R(x) \geq 2 \), *then*

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 0. \]

If \(\sup_{x \in \mathbb{R}^n \setminus \mathcal{Z}} R(x) < 2 \) *and if there is no drift, i.e.,* \(b(\cdot) \equiv 0 \), *then*

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 1. \]

- \(R(\cdot) \equiv 2 \) for \(n \)-dim. BM, i.e., \(A(\cdot) \equiv I \).
- If there is drift, take \(\frac{\text{trace}(D'A(x)D) + x' DD'b(x)] \cdot x' DD'x}{x' DD' A(x) DD'x} \).

Idea of Proof: a comparison with Bessel process with dimension two.
Define the local effective dimension:

\[R(x) := \frac{\text{trace}(D' A(x) D) x' DD' x}{x' DD' A(x) DD' x} ; \quad x \in \mathbb{R}^n \setminus \mathcal{Z}. \]

Proposition

Suppose \(s(X(0)) \neq 0 \). If \(\inf_{x \in \mathbb{R}^n \setminus \mathcal{Z}} R(x) \geq 2 \), then

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 0. \]

If \(\sup_{x \in \mathbb{R}^n \setminus \mathcal{Z}} R(x) < 2 \) and if there is no drift, i.e., \(b(\cdot) \equiv 0 \), then

\[\mathbb{P}(X_1(t) = X_2(t) = X_3(t) \text{ for some } t \geq 0) = 1. \]

- \(R(\cdot) \equiv 2 \) for \(n-\)dim. BM, i.e., \(A(\cdot) \equiv I \).
- If there is drift, take \(\frac{[\text{trace}(D' A(x) D) + x' DD' b(x)] \cdot x' DD' x}{x' DD' A(x) DD' x} \).

Idea of Proof: a comparison with Bessel process with dimension two.
Rankings

Recall $Y(1)(\cdot) \geq Y(2)(\cdot) \geq \cdots \geq Y(n)(\cdot)$. Let us denote by $\Lambda^{k,j}(t)$ the local time accumulated at the origin by the nonnegative semimartingale $Y(k)(\cdot) - Y(j)(\cdot)$ up to time t for $1 \leq k < j \leq n$.

Theorem [Banner & Ghomrasni (07)] For a general class of semimartingale $Y(\cdot)$, the rankings satisfy

$$
\begin{align*}
\text{d} Y(k)(t) &= \sum_{i=1}^{n} 1_{Q(i)}(Y(t)) \text{d} Y_i(t) \\
&+ (N_k(t))^{-1} \left[\sum_{\ell=k+1}^{n} \text{d} \Lambda^{k,\ell}(t) - \sum_{\ell=1}^{k-1} \text{d} \Lambda^{\ell,k}(t) \right]
\end{align*}
$$

where $N_k(t)$ is the cardinality $|\{i : Y_i(t) = Y(k)(t)\}|$.
Rankings

Recall \(Y_{(1)}(\cdot) \geq Y_{(2)}(\cdot) \geq \cdots \geq Y_{(n)}(\cdot) \). Let us denote by \(\Lambda^{k,j}(t) \) the local time accumulated at the origin by the nonnegative semimartingale \(Y_{(k)}(\cdot) - Y_{(j)}(\cdot) \) up to time \(t \) for \(1 \leq k < j \leq n \).

Lemma Under the non-degeneracy condition \(\sigma_k > 0 \) for \(k = 1, \ldots, n \),

\[
dY_{(k)}(t) = \left(\gamma + g_k + \sum_{i=1}^{n} \gamma_i 1_{Q_k(i)}(Y(t)) \right) dt + \sigma_k dB_k(t)
\]

\[
+ \frac{1}{2} \left[d\Lambda^{k,k+1}(t) - d\Lambda^{k-1,k}(t) \right].
\]

for \(k = 1, \ldots, n \), \(0 \leq t \leq T \).

Idea of Proof: a comparison with a Bessel process with dimension one to show \(\Lambda^{k,\ell}(\cdot) \equiv 0 , |k - \ell| \geq 2 \).
Recall $Y_{(1)}(\cdot) \geq Y_{(2)}(\cdot) \geq \cdots \geq Y_{(n)}(\cdot)$. Let us denote by $\wedge_{k,j}(t)$ the local time accumulated at the origin by the nonnegative semimartingale $Y_{(k)}(\cdot) - Y_{(j)}(\cdot)$ up to time t for $1 \leq k < j \leq n$.

Lemma Under the non-degeneracy condition $\sigma_k > 0$ for $k = 1, \ldots, n$,

$$dY_{(k)}(t) = \left(\gamma + g_k + \sum_{i=1}^{n} \gamma_i^1 Q_k^{(i)}(Y(t))\right) dt + \sigma_k \, dB_k(t)$$

$$+ \frac{1}{2} \left[d\wedge_{k,k+1}(t) - d\wedge_{k-1,k}(t) \right].$$

for $k = 1, \ldots, n$, $0 \leq t \leq T$.

Idea of Proof: a comparison with a Bessel process with dimension one to show $\wedge_{k,\ell}(\cdot) \equiv 0$, $|k - \ell| \geq 2$.
Long-term growth relations

Proposition Under the assumptions we obtain the following long-term growth relations:

\[
\lim_{T \to \infty} \frac{Y_i(T)}{T} = \lim_{T \to \infty} \frac{\log X_i(T)}{T} = \gamma = \lim_{T \to \infty} \frac{\log \sum_{i=1}^{n} X_i(T)}{T} \quad \text{a.s.}
\]

Thus the model is coherent:

\[
\lim_{T \to \infty} \frac{1}{T} \log \mu_i(T) = 0 \quad \text{a.s.;} \quad i = 1, \ldots, n
\]

where \(\mu_i(\cdot) = \frac{X_i(\cdot)}{X_1(\cdot) + \cdots + X_n(\cdot)} \). Moreover,

\[
\sum_{k=1}^{n} g_k \theta_{k,i} + \gamma_i = 0 ; \quad i = 1, \ldots, n.
\]
\[\sum_{k=1}^{n} g_{k} \theta_{k,i} + \gamma_{i} = 0; \quad i = 1, \ldots, n. \]

The log-capitalization \(Y \) grows with rate \(\gamma \) and follows

\[d Y_{i}(t) = \left(\gamma + \sum_{k=1}^{n} g_{k} 1_{Q_{k}^{(i)}}(Y(t)) + \gamma_{i} \right) dt \]

\[+ \sum_{k=1}^{n} \sigma_{k} 1_{Q_{k}^{(i)}}(Y(t))d W_{i}(t); \quad 0 \leq t < \infty \]

for \(i = 1, \ldots, n \). The ranking \((Y_{(1)}(\cdot), \ldots, Y_{(n)}(\cdot)) \) follows

\[dY_{(k)}(t) = \left(\gamma + g_{k} + \sum_{i=1}^{n} \gamma_{i} 1_{Q_{k}^{(i)}}(Y(t)) \right) dt + \sigma_{k} d B_{k}(t) \]

\[+ \frac{1}{2} \left[d \Lambda^{k,k+1}(t) - d \Lambda^{k-1,k}(t) \right]. \]

for \(k = 1, \ldots, n, \; 0 \leq t < \infty \).
Semimartingale reflected Brownian motions

The adjacent differences (gaps) $\Xi(\cdot) := (\Xi_1(\cdot), \ldots, \Xi_n(\cdot))'$ where $\Xi_k(\cdot) := Y_{(k)}(\cdot) - Y_{(k+1)}(\cdot)$ for $k = 1, \ldots, n-1$ can be seen as a semimartingale reflected Brownian motion (SRBM):

$$\Xi(t) = \Xi(0) + \zeta(t) + (I_n - Q)\Lambda(t)$$

where $\zeta(\cdot) := (\zeta_1(\cdot), \ldots, \zeta_n(\cdot))'$, $\Lambda(\cdot) := (\Lambda^{1,2}(\cdot), \ldots, \Lambda^{n-1,n}(\cdot))'$,

$$\zeta_k(\cdot) := \sum_{i=1}^{n} \int_{0}^{\cdot} \mathbf{1}_{Q_k(i)}(Y(s)) \, dY(s) - \sum_{i=1}^{n} \int_{0}^{\cdot} \mathbf{1}_{Q_{k+1}(i)}(Y(s)) \, dY(s)$$

for $k = 1, \ldots, n-1$, and Q is an $(n-1) \times (n-1)$ matrix with elements
Thus the gaps $\Xi_k := Y_{(k)}(\cdot) - Y_{(k+1)}(\cdot)$ follow

$$\Xi(t) = \Xi(0) + \zeta(t) + (I_n - Q)\Lambda(t)$$

In order to study the invariant measure μ, we apply the theory of semimartingale reflected Brownian motions developed by M. Harrison, M. Reiman, R. Williams and others.

In addition to the model assumptions, we assume linearly growing variances:

$$\sigma_2^2 - \sigma_1^2 = \sigma_3^2 - \sigma_2^2 = \cdots = \sigma_n^2 - \sigma_{n-1}^2.$$
Invariant distribution of gaps and index

Let us define the indicator map $\mathbb{R}^n \ni x \mapsto p^x \in \Sigma_n$ such that $x_{p^x(1)} \geq x_{p^x(2)} \geq \cdots \geq x_{p(n)}$, and the index process $\mathcal{P}_t := p^{Y(t)}$.

Proposition Under the stability and the linearly growing variance conditions the invariant distribution $\nu(\cdot)$ of $(\Xi(\cdot), \mathcal{P})$ is

$$\nu(A \times B) = \left(\sum_{q \in \Sigma_n} \prod_{k=1}^{n-1} \lambda_{q,k}^{-1} \right)^{-1} \sum_{p \in \Sigma_n} \int_A \exp(-\langle \lambda_p, z \rangle) d z$$

for every measurable set $A \times B$ where $\lambda_p := (\lambda_{p,1}, \ldots, \lambda_{p,n-1})'$ is the vector of components

$$\lambda_{p,k} := \frac{-4\left(\sum_{\ell=1}^{k} g_{\ell} + \gamma_{p(\ell)} \right)}{\sigma_k^2 + \sigma_{k+1}^2} > 0; \quad p \in \Sigma_n, \quad 1 \leq k \leq n-1.$$

Proof: an extension from M. Harrison and R. Williams ('87).
Corollary The average occupation times are

\[
\theta_p = \left(\sum_{q \in \Sigma_n} \prod_{k=1}^{n-1} \lambda_{q,k}^{-1} \right)^{-1} \prod_{j=1}^{n-1} \lambda_{p,j}^{-1}
\]

and

\[
\theta_{k,i} = \sum_{\{p \in \Sigma_n : p(k) = i\}} \theta_p
\]

for \(p \in \Sigma_n \) and \(1 \leq k, i \leq n \).

If all \(\gamma_i = 0 \) and \(\sigma_1^2 = \cdots = \sigma_n^2 \), then

\[
\theta_{k,i} = \frac{1}{n}
\]

for \(1 \leq k, i \leq n \).

Heat map of \(\theta_{k,i} \) when \(n = 10 \), \(\sigma_k^2 = 1 + k \), \(g_k = -1 \) for \(k = 1, \ldots, 9 \), \(g_{10} = 9 \), and

\[
\gamma_i = 1 - (2i)/(n+1)
\]

for \(i = 1, \ldots, n \).
Market weights come from Pareto type

Corollary The joint invariant distribution of market shares

\[\mu(i)(\cdot) := \frac{X(i)(\cdot)}{X(1)(\cdot) + \cdots + X(n)(\cdot)} ; \quad i = 1, \ldots, n \]

has the density

\[
\varphi(m_1, \ldots, m_{n-1}) = \sum_{p \in \Pi_n} \theta_p \frac{\lambda_{p,1} \cdots \lambda_{p,n-1}}{m_1^{\lambda_{p,1}+1} \cdot m_2^{\lambda_{p,2}-\lambda_{p,1}+1} \cdots m_{n-1}^{\lambda_{p,n-1}-\lambda_{p,n-2}+1} m_n^{\lambda_{p,n-2}+1}} ,
\]

\[0 < m_n \leq m_{n-1} \leq \ldots \leq m_1 < 1 , \]

\[m_n = 1 - m_1 - \cdots - m_{n-1} . \]

This is a distribution of ratios of Pareto type distribution.
Expected capital distribution curves

From the expected slopes
$$E^\nu \left[\frac{\log \mu(k) - \log \mu(k-1)}{\log(k+1) - \log k} \right] = -\frac{E^\nu(\Xi_k)}{\log(1+k^{-1})}$$
we obtain expected capital distribution curves.

$n = 5000, \ g_n = c_*(2n - 1), \ g_k = 0, \ 1 \leq k \leq n - 1, \ \gamma_1 = -c_*, \ \gamma_i = -2c_*, \ 2 \leq i \leq n, \ \sigma_k^2 = 0.075 + 6k \times 10^{-5}, \ 1 \leq k \leq n. (i) \ c_* = 0.02, \ (ii) \ c_* = 0.03, \ (iii) \ c_* = 0.04.$

(iv) $c_* = 0.02, \ g_1 = -0.016, \ g_k = 0, \ 2 \leq k \leq n - 1, \ g_n = (0.02)(2n - 1) + 0.016,$

(v) $g_1 = \cdots = g_{50} = -0.016, \ g_k = 0, \ 51 \leq k \leq n - 1, \ g_n = (0.02)(2n - 1) + 0.8.$
Empirical data

Source: Fernholz ('02)

Capital Stocks and Portfolio Rules

Market $X = ((X_1(t), \ldots, X_n(t)), t \geq 0)$ of n companies

$$
\log \frac{X_i(T)}{X_i(0)} = \int_0^T G_i(t) dt + \int_0^T \sum_{\nu=1}^n S_{i,\nu}(t) dW_\nu(t),
$$

with initial capital $X_i(0) = x_i > 0$, $i = 1, \ldots, n$, $0 \leq T < \infty$.

Define $a_{ij}(\cdot) = \sum_{\nu=1}^n S_{i,\nu}(\cdot)S_{j,\nu}(\cdot)$ and $A_{ij}(\cdot) = \int_0^\cdot a_{ij}(t) dt$.

Long only Portfolio rule π and its wealth V^{π}.

Choose $\pi \in \Delta^n_+ := \{ x \in \mathbb{R}^n : \sum x_i = 1, x_i \geq 0 \}$

invest $\pi_i V^{\pi}$ of money to company i for $i = 1, \ldots, n$, i.e., $\pi_i V^{\pi}/X_i$ share of company i:

$$
dV^{\pi}(t) = \sum_{i=1}^n \frac{\pi_i(t) V^{\pi}(t)}{X_i(t)} dX_i(t), \quad 0 \leq t < \infty,
$$

$V^{\pi}(0) = w$.
Capital Stocks and Portfolio Rules

- Market \(X = ((X_1(t), \ldots, X_n(t)), t \geq 0) \) of \(n \) companies

\[
\log \frac{X_i(T)}{X_i(0)} = \int_0^T G_i(t)\,dt + \int_0^T \sum_{\nu=1}^n S_{i,\nu}(t)\,dW_{\nu}(t),
\]

with initial capital \(X_i(0) = x_i > 0, \ i = 1, \ldots, n, \ 0 \leq T < \infty \).

Define \(a_{ij}(\cdot) = \sum_{\nu=1}^n S_{i,\nu}(\cdot)S_{j,\nu}(\cdot) \) and \(A_{ij}(\cdot) = \int_0^\cdot a_{ij}(t)\,dt \).

- Long only Portfolio rule \(\pi \) and its wealth \(V^\pi \).

Choose \(\pi \in \Delta^n_+ := \{ x \in \mathbb{R}^n : \sum x_i = 1, \ x_i \geq 0 \} \)

invest \(\pi_i V^\pi \) of money to company \(i \) for \(i = 1, \ldots, n \), i.e., \(\pi_i V^\pi / X_i \) share of company \(i \):

\[
dV^\pi(t) = \sum_{i=1}^n \frac{\pi_i(t)V^\pi(t)}{X_i(t)}dX_i(t), \quad 0 \leq t < \infty,
\]

\(V^\pi(0) = w \).
Capital Stocks and Portfolio Rules

Market $X = ((X_1(t), \ldots, X_n(t)), t \geq 0)$ of n companies

$$\log \frac{X_i(T)}{X_i(0)} = \int_0^T G_i(t)dt + \int_0^T \sum_{\nu=1}^n S_{i,\nu}(t)dW_{\nu}(t),$$

with initial capital $X_i(0) = x_i > 0$, $i = 1, \ldots, n$, $0 \leq T < \infty$. Define $a_{ij}(\cdot) = \sum_{\nu=1}^n S_{i\nu}(\cdot)S_{j\nu}(\cdot)$ and $A_{ij}(\cdot) = \int_0^\cdot a_{ij}(t)dt$.

Long only Portfolio rule π and its wealth V^π.

Choose $\pi \in \Delta^n_+ := \{x \in \mathbb{R}^n : \sum x_i = 1, x_i \geq 0\}$ invest $\pi_i V^\pi$ of money to company i for $i = 1, \ldots, n$, i.e., $\pi_i V^\pi / X_i$ share of company i:

$$dV^\pi(t) = \sum_{i=1}^n \frac{\pi_i(t) V^\pi(t)}{X_i(t)}dX_i(t), \quad 0 \leq t < \infty,$$

$V^\pi(0) = w$.

Portfolios and Relative Arbitrage

- **Market portfolio**: Take
 \[\pi(t) = m(t) = (m_1(t), \cdots, m_n(t)) \in \Delta^n \] where
 \[m_i(t) = \frac{X_i(t)}{X_1 + \cdots + X_n(t)}, \quad i = 1, \ldots, n, \quad 0 \leq t < \infty. \]

- **Diversity weighted portfolio**: Given \(p \in [0, 1] \), take
 \[\pi_i(t) = \frac{(m_i(t))^p}{\sum_{j=1}^n (m_j(t))^p} \quad \text{for} \quad i = 1, \ldots, n, \quad 0 \leq t < \infty. \]

- **Functionally generated portfolio** (Fernholz (’02) & Karatzas (’08)).

- **A portfolio** \(\pi \) **represents an arbitrage opportunity** relative to another portfolio \(\rho \) on \([0, T] \), if
 \[\mathbb{P}(V^{\pi}(T) \geq V^{\rho}(T)) = 1, \quad \mathbb{P}(V^{\pi}(T) > V^{\rho}(T)) > 0. \]

*Can we find an arbitrage opportunity \(\pi \) relative to \(m \)?
Portfolios and Relative Arbitrage

- **Market portfolio**: Take
 \[\pi(t) = m(t) = (m_1(t), \ldots, m_n(t)) \in \Delta^n \] where
 \[m_i(t) = \frac{X_i(t)}{X_1(t) + \cdots + X_n(t)}, \quad i = 1, \ldots, n, \quad 0 \leq t < \infty. \]

- **Diversity weighted portfolio**: Given \(p \in [0, 1] \), take
 \[\pi_i(t) = \frac{(m_i(t))^p}{\sum_{j=1}^n (m_j(t))^p} \quad \text{for} \quad i = 1, \ldots, n, \quad 0 \leq t < \infty. \]

- **Functionally generated portfolio** (Fernholz ('02) & Karatzas ('08)).

- **A portfolio** \(\pi \) represents an arbitrage opportunity relative to another portfolio \(\rho \) on \([0, T]\), if
 \[\mathbb{P}(V^{\pi}(T) \geq V^{\rho}(T)) = 1, \quad \mathbb{P}(V^{\pi}(T) > V^{\rho}(T)) > 0. \]

Can we find an arbitrage opportunity \(\pi \) relative to \(m \)?
Constant-portfolio

For a constant-proportion $\pi(\cdot) \equiv \pi$,

$$V^{\pi}(t) = w \cdot \exp \left[\sum_{i=1}^{n} \pi_i \left\{ \frac{A_{ij}(t)}{2} + \log \left(\frac{X_i(t)}{X_i(0)} \right) \right\} - \frac{1}{2} \sum_{i,j=1}^{n} \pi_i A_{ij}(t) \pi_j \right]$$

for $0 \leq t < \infty$.

Here $A_{ij}(\cdot) = \int_{0}^{\cdot} a_{ij}(t) dt$ and $a_{ij}(\cdot) = \sum_{\nu=1}^{n} S_{i\nu}(\cdot) S_{j\nu}(\cdot)$,

$$d \ Y(t) = G(Y(t))dt + S(Y(t))dW(t) ; \ 0 \leq t < \infty,$$

$$G(y) = \sum_{p \in \Sigma_n} (g_{p}^{-1}(1) + \gamma_1 + \gamma, \ldots, g_{p}^{-1}(n) + \gamma n + \gamma)' \cdot 1_{\mathbb{R}^p}(y) ,$$

$$S(y) = \sum_{p \in \Sigma_n} \text{diag}(\sigma_{p}^{-1}(1), \ldots, \sigma_{p}^{-1}(n)) \cdot 1_{\mathbb{R}^p}(y) ; \ y \in \mathbb{R}^n.$$
Target Portfolio (Cover (’91) & Jamshidian (’92))

\[V^\pi(\cdot) = w \cdot \exp \left[\sum_{i=1}^{n} \pi_i \left\{ \frac{A_{ii}(t)}{2} + \log \left(\frac{X_i(\cdot)}{X_i(0)} \right) \right\} - \frac{1}{2} \sum_{i,j=1}^{n} \pi_i A_{ij}(\cdot) \pi_j \right] \]

Target Portfolio \(\Pi^*(t) \) maximizes the wealth \(V^\pi(t) \) for \(t \geq 0 \):

\[V_*(t) := \max_{\pi \in \Delta_n^+} V^\pi(t), \quad \Pi^*(t) := \arg \max_{\pi \in \Delta_n^+} V^\pi(t), \]

where by Lagrange method we obtain

\[
\Pi^*_i(t) = \left(2A_{ii}(t) \sum_{j=1}^{n} \frac{1}{A_{jj}(t)} \right)^{-1} \left[2 - n - 2 \sum_{j=1}^{n} \frac{1}{A_{jj}(t)} \log \left(\frac{X_j(t)}{X_j(0)} \right) \right] \\
+ \frac{1}{2} + \frac{1}{A_{ii}(t)} \log \left(\frac{X_i(t)}{X_i(0)} \right) ; \quad 0 \leq t < \infty .
\]
Asymptotic Target Portfolio

Under the hybrid Atlas model with the assumptions

\[v(\pi) := \lim_{T \to \infty} \frac{1}{T} \log V^\pi(T) = \gamma + \frac{1}{2} \left(\sum_{i=1}^{n} \pi_i a_{ii}^\infty - \sum_{i=1}^{n} \pi_i a_{ii}^\infty \pi_j \right) \]

where \((a_{ij}^\infty)_{1 \leq i \leq n}\) is the \((i,i)\) element of

\[a^\infty := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (a_{ij}(t))_{1 \leq i,j \leq n} dt = \sum_{p \in \Sigma} \theta_p s_p s_p' \cdot \]

Asymptotic target portfolio maximizes the excess growth \(\gamma_\pi^\infty:\)

\[\bar{\pi} := \arg \max_{\pi \in \Delta^n_+} \left(\sum_{i=1}^{n} \pi_i a_{ii}^\infty - \sum_{i=1}^{n} \pi_i a_{ii}^\infty \pi_j \right). \]

We obtain

\[\bar{\pi}_i = \frac{1}{2} \left[1 - \frac{n-2}{a_{ii}^\infty} \left(\sum_{j=1}^{n} \frac{1}{a_{jj}^\infty} \right)^{-1} \right] = \lim_{t \to \infty} \Pi_i^*(t); \quad i = 1, \ldots, n. \]
Asymptotic Target Portfolio

Under the hybrid Atlas model with the assumptions

\[v(\pi) := \lim_{T \to \infty} \frac{1}{T} \log V^\pi(T) = \gamma + \frac{1}{2} \left(\sum_{i=1}^{n} \pi_i a_{ii}^\infty - \sum_{i=1}^{n} \pi_i a_{ii}^\infty \pi_j \right) \]

where \((a_{ij}^\infty)_{1 \leq i \leq n}\) is the \((i,i)\) element of

\[a^\infty := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (a_{ij}(t))_{1 \leq i,j \leq n} d t = \sum_{p \in \Sigma_n} \theta_{p^5} p_{5'}^p. \]

Asymptotic target portfolio maximizes the excess growth \(\gamma^\infty_\pi\) :

\[\bar{\pi} := \arg \max_{\pi \in \Delta^n_+} \left(\sum_{i=1}^{n} \pi_i a_{ii}^\infty - \sum_{i=1}^{n} \pi_i a_{ii}^\infty \pi_j \right). \]

We obtain

\[\bar{\pi}_i = \frac{1}{2} \left[1 - \frac{n-2}{a_{ii}^\infty} \left(\sum_{j=1}^{n} \frac{1}{a_{jj}^\infty} \right)^{-1} \right] = \lim_{t \to \infty} \Pi^*_i(t); \quad i = 1, \ldots, n. \]
Universal Portfolio (Cover (’91) & Jamshidian (’92))

Universal portfolio is defined as

$$\hat{\Pi}_i(\cdot) := \frac{\int_{\Delta^+} \pi_i \mathcal{V}(\cdot) d\pi}{\int_{\Delta^+} \mathcal{V}(\cdot) d\pi}, \quad 1 \leq i \leq n, \quad \hat{\mathcal{V}}(\cdot) = \frac{\int_{\Delta^+} \mathcal{V}(\cdot) d\pi}{\int_{\Delta^+} d\pi}. $$

Proposition: Under the hybrid Atlas model with the model assumptions,

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\hat{\mathcal{V}}(T)}{\hat{\mathcal{V}}(\cdot)} = \lim_{T \to \infty} \frac{1}{T} \log \frac{\hat{\mathcal{V}}(T)}{\mathcal{V}^*(T)} = 0 \quad \mathbb{P} - a.s.$$

Universal Portfolio (Cover (’91) & Jamshidian (’92))

Universal portfolio is defined as

\[\hat{\Pi}_i(\cdot) := \frac{\int_{\Delta^n_+} \pi_i \, V^\pi(\cdot) \, d\pi}{\int_{\Delta^n_+} V^\pi(\cdot) \, d\pi}, \quad 1 \leq i \leq n, \quad V^{\hat{\Pi}}(\cdot) = \frac{\int_{\Delta^n_+} V^\pi(\cdot) \, d\pi}{\int_{\Delta^n_+} d\pi}. \]

Proposition Under the hybrid Atlas model with the model assumptions,

\[\lim_{T \to \infty} \frac{1}{T} \log \frac{V^{\hat{\Pi}}(T)}{V^\pi(T)} = \lim_{T \to \infty} \frac{1}{T} \log \frac{V^{\hat{\Pi}}(T)}{V^*_T(T)} = 0 \quad \mathbb{P} - a.s. \]
Conclusion

- Ergodic properties of Hybrid Atlas model
- Diversity weighted portfolio, Target portfolio, Universal portfolio.
- Further topics: short term arbitrage, generalized portfolio generating function, large market \((n \to \infty)\), numéraire portfolio, data implementation.

References:

1. arXiv: 0909.0065

Tomoyuki Ichiba (UCSB)
ichiba@pstat.ucsb.edu