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Introduction
Corporate defaults are not independent

Default dependence structure is complex and multi-faceted.
For example:

Customer-Supplier: Delphi vs GM and Visteon vs Ford
Counterparty Risk: Lehman vs. other financial institutions
Regional risk factors: automotive bankruptcies affecting credit-worthiness of
many Michigan firms
Industry sector-specific risk factors: high oil prices affecting credit-worthiness
of the airline industry
Systematic Risk: recession affecting credit-worthiness of nearly all firms in the
nation
Systemic Risk: high degree of interconnectedness in the financial system
through counterparty risk could have lead to a catastrophic failure of the
whole system if another major financial institution of the size of Lehman or
larger were allowed to fail

Default events sometimes happen simultaneously (default clustering).
For example (CDS settlement events in 2008):

Oct (2 week span): Freddie and Fannie (6th), LEH (10th), WaMu (23rd)
Nov (1 week span): Landsbanki (4th), Glitnir (5th), Kaupthing Bank (6th)
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Default Correlation and Clustering via Multivariate Lévy
Subordination

Consider n obligors with each default time, τi , defined by

.
Default Hazard Process Λi

t..

.

. ..

.

.

Consider the following processes:

X a
s , a = 1, ..., d ; are d independent one-dimensional, non-negative Markov

process starting from X a
0 = xa ≥ 0

Y a
t =

R t

0
X a

s ds, the corresponding integrated processes

Z a
t = Y a

T a
t
; time changed of process Y a

t with a d-dimensional Lévy
subordinator Tt (we time change the integral)

then define the Default Hazard Process Λi
t as:

Λi
t :=

Pd
a=1 Ai,a Z a

t , i = 1, ..., n,

A is an n × d matrix with non-negative entries Ai,a ≥ 0
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d -dimensional subordinator
.
d-dimensional subordinator, Tt..

.

. ..

.

.

Lévy process in Rd
+ = [0,∞)d that is non-decreasing in each of its

coordinates. That is, each of its coordinates is a one-dimensional Lévy
subordinator.

The (d-dimensional) Laplace transform of a d-dimensional

subordinator is given by (here ua ≥ 0 and ⟨u, v⟩ =
∑d

a=1 uava)

E[e−⟨u,Tt⟩] = e−tϕ(u)

The Laplace exponent ϕ(u) is given by the Lévy-Khintchine formula:

ϕ(u) = ⟨γ, u⟩ +
∫

Rd
+
(1 − e−⟨u,s⟩)ν(ds),

where (drift) γ ∈ Rd
+ and the Lévy measure ν is a sigma-finite

measure on Rd concentrated on Rd
+\{0} such that∫

Rd
+
(|s| ∧ 1)ν(ds) < ∞.

Rafael Mendoza (McCombs) Default Correlation WCMF 2009 4 / 26



d -dimensional subordinator
.
d-dimensional subordinator, Tt..

.

. ..

.

.
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d -dimensional subordinator (special case)

.
Linear Tranformations of Independent Subordinators
..

.

. ..

.

.

Let Sp
t beN independent one-dimensional subordinators and B a

d × N matrix with non-negative entries Ba,p. Define

T a
t =

∑N
p=1 Ba,pSp

t , a = 1, ..., d .

Then the Rd
+-valued process Tt is a d-dimensional subordinator with

Laplace exponent given by:

ϕ(u) =
∑N

p=1 ϕp(vp), vp =
∑d

a=1 Ba,pua

where ϕp(v) are Laplace exponents of N independent one-dimensional
subordinators Sp, p = 1, ...,N.
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Two Firms Case : no time changes

Consider the following setup for analyzing two firms:

Two CIR processes X i
t , i ∈ {1, 2}:

dXt = κ(θ − Xt)dt + σ
√

XtdBt , X0 = x

x0 θ κ σ

X 1
t 0.005 0.08 0.13 0.07

X 2
t 0.035 0.013 0.21 0.055

Let the matrix A be defined as:

A =

„

0.15 0.85
0.65 0.35

«

The Default Hazard process Λt := A Zt :

Λ1
t := 0.15

∫ t

0
X 1

u du + 0.85
∫ t

0
X 2

u du

Λ2
t := 0.65

∫ t

0
X 1

u du + 0.35
∫ t

0
X 2

u du

(Zt = Y (t) =
∫ t

0
Xudu, since we are not using time changes yet)
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Two Firms Case : no time changes
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Two Firms Case : no time changes
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Two Firms Case: Time Changes

Consider the following CPP subordinators with characteristic triplet (γ, 0, ν)
defined by the drift γ and the three parameter density ν(s) = Cs−(Y+1)e−ηs
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Two Firms Case: Subordination
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Two Firms Case: Full Model

The Default Hazard process is given by,

Λt = AZt with Z i
t = Y i

T i
t

and Tt = B St

Consider the matrices

A =

(
0.15 0.85
0.65 0.35

)
, B =

(
0.5 0.5
0.7 0.3

)
.
Λ1

t = A11 Z1
t + A12 Z2

t.. .
. ..

.

.

.
Λ2

t = A21 Z1
t + A22 Z2

t.. .
. ..

.

.

In our framework dependency enters through the diffusion component, A; and
through the jump component, B.

Non-Trivial Dependency!
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Joint Survival Probability
.
Theorem 1
..

.

. ..

.

.

For βa ≥ 0, let La
xa,βa

(t) denote the Laplace transforms of the integrals up to
time t of the Markov processes X a starting at xa at time zero:

La
xa,βa

(t) = Exa

[
e−βa

R t
0

X a
s ds

]
.

For an ordered subset Ξ = {i1, ..., ik} of {1, 2, ..., n} with 1 ≤ k ≤ n define
li (Ξ) ∈ {0, 1}, i = 1, ..., n, by:

li (Ξ) = 1{Ξ}(i),

where the indicator 1{Ξ}(i) = 1 if the integer i belongs to Ξ and 1{Ξ}(i) = 0
otherwise.

The joint survival probability, P(τi1 > t, ..., τik > t), is given by:

PΞ(t) = Pi1,...,ik (t) =
∫

Rd
+

(∏d
a=1 La

xa,βΞ
a
(sa)

)
πt(ds),

where P(T 1
t ∈ ds1, ..., T d

t ∈ dsd) = πt(ds) is the transition measure of the
d-dimensional subordinator T , and βΞ

a are:

βΞ
a =

∑n
i=1 li (Ξ)Ai,a.
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Joint Survival Probability: Remarks

The expression in Theorem 1 expression is not very practical. It requires,

the knowledge of the transition measure of the subordinator,
the evaluation of a d-dimensional integral numerically

In practice, we know the Laplace exponent of the subordinator, but do not
know the transition measure.

Remarkably, the Spectral Method allows us to kill two birds with one stone:

Under some additional conditions on Markov processes X, we avoid BOTH the
need for the numerical integration, and we only need the Laplace exponent of
the subordinator.
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Spectral Representation of FK Semigroups of
One-Dimensional Diffusions

.
Feynman-Kac semigroup of linear operators {Pt , t ≥ 0}
..

.

. ..

.

.

Suppose Xt is a one-dimensional diffusion and consider its F-K semigroup:

Pt f (x) = Ex [e
−

R t
0

k(Xs )ds f (Xt)]

Linear operators Pt are symmetric in this Hilbert space, that is,
(Pt f , g) = (f ,Ptg) ∀f , g ∈ L2((e1, e2), m) wrt the speed measure:

m(dx) = 2
σ2(x)

exp
“

R x

x0

2µ(y)

σ2(y)
dy

”

dx

where k(x) is the killing rate; whereas, µ(x) and σ(x) are the (state
dependent) drift and volatility of the diffusion process Xt , respectively.
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Spectral Representation of FK Semigroups of
One-Dimensional Diffusions

.
Spectral Representation
..

.

. ..

.

.

Under some conditions on the behavior of µ(x), σ(x), and k(x) near the
boundaries e1 and e2, the spectrum is purely discrete and the spectral
expansion reduces to the eigenfunction expansion:

Pt f (x) =
∑∞

n=1 cne
−λntφn(x)

cn = (f , φn) are the expansion coefficients, whereas, −λn and φn are
eigenvalues and eigenfunctions of the infinitesimal generator G of the
semigroup P:

Gφn(x) = 1
2
σ2(x)φ′′

n (x) + µ(x)φ′
n(x) − k(x)φn(x) = −λnφn
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The Feynman-Kac semigroup of the CIR Process.
Let Xt be a CIR diffusion starting from X0 = x > 0 and solving the SDE

dXt = κ (θ − Xt) dt + σ
√

XtdBt ,

and with the speed measure, m(x) = 2
σ2 xb−1e−

2κ
σ2 x .

The spectrum is discrete, and the eigenfunction expansion of the Laplace
transform reads (k(x) = βx killing rate):,

Lx,β(t) = Ex

[
e−β

R t
0

Xsds
]

=
∑∞

n=0 cne
−λntφn(x), cn = (1, φn).

where the eigenfunctions, eigenvalues and expansion coefficients are given by,

λn = ζn + b
2
(ζ − κ), φn(x) = Nn exp

“

κ−ζ
σ2 x

”

L
(b−1)
n

“

2ζ
σ2 x

”

,

cn = (1, φn) = 1
Nn

“

βσ2

κ+ζ

”b“

κ−ζ
κ+ζ

”n
,

ζ :=
p

κ2 + 2βσ2, b := 2κθ
σ2 , Nn =

r

βσ2(n!)
2Γ(b+n)

“

2ζ
βσ2

”

b
2
,

L
(b−1)
n are the generalized Laguerre polynomials
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Spectral Expansion of the Joint Survival Probability

.
Theorem 2
..

.

. ..

.

.

Suppose that X a are one-dimensional diffusion processes with finite speed
measures and such that their Feynman-Kac semigroups with k(x) = βx with
β ≥ 0 have purely discrete spectra.

Then the joint survival probability, P(τi1 > t, ..., τik > t), has the
eigenfunction expansion:

PΞ(t) =
∑∞

n1=1 · · ·
∑∞

nd=1 e−tϕ(λ1,Ξ
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Default Correlation and Clustering Measures

With the explicit expressions for joint survival probabilities (spectral expansions),
we can explicitly compute a variety of dependence measures among default events
and times in this class of models. For instance,

Correlation matrix for default indicators:

ρD
ij (t) := corr(1{τi≤t}, 1{τj≤t}) =

Pij (t)−Pi (t)Pj (t)√
Pi (t)(1−Pi (t))Pj (t)(1−Pj (t))

where Pi (t) are the single-name survival probabilities and Pij(t) are the joint
survival probabilities for the pairs of names.

Correlation matrix for default times:

ρτ
ij := corr(τi , τj) =

E[τiτj ]−µτ
i µτ

i

στ
i στ

j

where µτ
i = E[τi ] and στ

i =
√

E[τ 2
i ] − (µτ

i )2 are the mean and standard
deviation of single-name default times.
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Correlation of default indicators, ρD
ij (t)

.
Moving the diffusion component, A
..

.

. ..

.

.

Fixing Matrix B and moving A

0.0

0.5

1.0

A11

0.0

0.5

1.0

A21

0.05

0.10

0.15

0.20

0.25

Ρ

Moving the Matrix A:

A =

(
A11 1 − A11

A21 1 − A21

)
Fixing the Matrix B:

B =

(
0.5 0.5
0.7 0.3

)

.
Moving the jump component, B
..

.

. ..

.

.

Fixing Matrix A and moving B

0.0

0.5

1.0

B11

0.0

0.5

1.0

B21
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0.12

Ρ

Fixing the Matrix A:

A =

(
0.15 0.85
0.65 0.35

)
Moving the Matrix B:

B =

(
B11 1 − B11

B21 1 − B21

)
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Higher Correlation, ρD
ij (t)

Changing the Lévy density, ν(s) = Cs−(Y+1)e−ηs and parameterizing C such that
E [S1yr ] = 1.5 yrs.

.
S1

t = γt + CPP, (γ = 1)
..

.

. ..

.

.

TC CPP With diffusion Hý=1L. Correlation, such that at t=1, E@TPtTD=1.5 yrs
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TC CPP Without diffusion Hý=0L. Correlation, such that at t=1, E@TPtTD=1.5 yrs
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Higher Correlation, ρD
ij (t)

η controls decay rate of large size jumps, Y the small size jumps

The smaller η the larger the jump size
The more negative Y the less frequent the smaller jumps become
Parameterizing C the overall arrival rate of jumps is modified so that E [S1yr ] = 1.5
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Requiring larger jumps (η small) when γ = 1 makes the jumps so infrequent (because of
C) that it is more likely to default (independently before a jump arrives) by diffusion.
When γ = 0 the only way to default is via jumps. Therefore, larger jumps (η small) will
trigger simultaneous defaults increasing the correlation up to 1

Any correlation level can be achieved by using linear combinations of subordinators with
different Lévy specifications
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Cloncluding Remarks

Our modeling framework allows us to induce default dependence through the
diffusion component of the hazard process, (A); and through its jump
component, (B).

This modeling structure is flexible enough to capture the variety default
dependence, such as counterparty risk, systematic and systemic risks, regional
and sectorial risks, etc.

We are able to produce arbitrarily high default correlation by choosing
appropriate linear combinations of Lévy subordinators

Using the Spectral Representation of the one-dimensional F-K semigroups,
we are able to produce analytical tractable formulas for joint survival
probabilities, default and clustering measures, pricing of credit assets, etc.

This is a work in progress and we are currently generating numerical
examples for the pricing of Credit Swap Baskets and CDO’s
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Using the Spectral Representation of the one-dimensional F-K semigroups,
we are able to produce analytical tractable formulas for joint survival
probabilities, default and clustering measures, pricing of credit assets, etc.

This is a work in progress and we are currently generating numerical
examples for the pricing of Credit Swap Baskets and CDO’s
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Questions?

Thank you
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