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Abstract

We study strict local martingales via h-transforms, a method which
first appeared in Delbaen-Schachermayer. We show that strict local
martingales arise whenever there is a consistent family of change of
measures where the two measures are not equivalent to one another.
Several old and new strict local martingales are identified. We treat
examples of diffusions with various boundary behavior, size-bias sam-
pling of diffusion paths, and non-colliding diffusions. A multidimen-
sional generalization to conformal strict local martingales is achieved
through Kelvin transform. As curious examples of non-standard be-
havior, we show by various examples that strict local martingales do
not behave uniformly when the function (x−K)+ is applied to them.
Implications to the recent literature on financial bubbles are discussed.

1 Introduction

Local martingales which are not martingales (known as “strict” local martin-
gales) arise naturally in the Doob-Meyer decomposition and in multiplicative
functional decompositions, as well as in stochastic integration theory. They
are nevertheless often considered to be anomalies, processes that need to be
maneuvered by localization. Hence, studies focussed purely on strict local
martingales are rare. One notable exception is the article by Elworthy, Li, &
Yor [8] who study their properties in depth. On the other hand, applications
of strict local martingales are common. See the articles by Bentata & Yor
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[2], Biane & Yor [3], Cox & Hobson [4], Fernholz & Karatzas [11], and the
very recent book-length preprint of Profeta, Roynette, and Yor [28].

Our goal in this paper is to demonstrate that strict local martingales
capture a fundamental probabilistic phenomenon. A first example occurs
when there is a pair of probability measures where one strictly dominates
the other (in the sense that their null sets are not the same). For positive
local martingales, such a phenomenon was originally identified by Delbaen
and Schachermayer in [6]. We start with the following result.

Let
(

Ω, {Ft}t≥0

)
be a filtered sample space on which two probability

measures P and Q are defined. We assume that P is locally strictly domi-
nated by Q, in the sense that P is absolutely continuous with respect to Q
(P << Q) on every Ft (see, for example, the book by Jacod & Shiryaev [15]
for a systematic treatment of this idea) and if we let dP/dQ |Ft := ht, then
we have

Q (τ0 <∞) > 0, (1)

where τ0 = inf {s > 0, hs = 0}. We claim the following result.

Proposition 1. Assume that h is a continuous process Q-almost surely.
Let {ft, t ≥ 0} be a continuous Q-martingale adapted to the filtration {Ft}.
Suppose either of the two conditions hold:

(i) f is uniformly integrable, EQ(f0) 6= 0, and Q (τ0 <∞) = 1, or,

(ii) f is nonnegative, Q(σ0 > τ0) > 0, where σ0 = inf{s ≥ 0 : fs = 0}.

Then the following process

Nt :=
ft
ht

is a strict local martingale under P .
However, if f is nonnegative and Q(σ0 > τ0) = 0, the process Nt is a

true martingale.

We identify several strict local martingales as an application of the previ-
ous result, in diverse topics such as diffusions conditioned to exit through a
subset of the boundary of a domain, size-biased sampling of diffusion paths,
and non-colliding diffusions such as Dyson’s Brownian motion from Random
Matrix Theory. Each of these examples involve a change of measure that
is locally strictly dominated, and hence leads to a plethora of examples of
strict local martingales.

A partial converse to Proposition 1 can be easily obtained by extending
the argument of [6] and has been done in Proposition 6. We show how
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stochastic calculus with respect to strict local martingales (which can be
quite tricky), can be reduced to stochastic calculus with respect to actual
martingales via such a change of measure. Our results in this direction are
related to recent work by Madan & Yor [23].

We also prove a multidimensional analogue of our results where a strict
local martingale in one-dimension is replaced by a conformal local martingale
in three or more dimensions where at least one coordinate process is strict.
The analysis exploits the Kelvin transform from classical potential theory.

A convex function applied to a martingale always gives rise to a sub-
martingale. However, this is not always true for strict local martingales.
From the standpoint of applications we are interested in two specific func-
tions x 7→ (k − x)+ and x 7→ (x − k)+, for some positive k. Both are
convex but display very different behavior when applied to strict local mar-
tingales. The former always leads to a submartingale, while the latter,
although a local submartingale, can have both increasing and decreasing ex-
pectations. We analyze its effect on the inverse 3-dimensional Bessel process
(the canonical continuous strict local martingale, much as Brownian motion
is the canonical continuous martingale) and demonstrate a curious phase
transition phenomenon. Similar examples were also identified in [8].

The final part of the paper discusses the implication of our results in
mathematical finance. A natural source for local martingales in mathemat-
ical finance is the condition of No Free Lunch with Vanishing Risk (see
Dealbaen & Schachermayer [5]). Roughly, it states that in a financial mar-
ket the no arbitrage condition is equivalent (in the case of continuous paths)
to the existence of an (equivalent) “risk neutral” probability measure Q
which turns the price process into either a martingale or a strict local mar-
tingale. The implications of our results can be readily understood if we
assume that the risk neutral measure produces a (one-dimensional) price
process X = (Xt)t≥0 that is a strict local martingale. In that case the
process Yt = (Xt − K)+ need not be a submartingale, and the function
t 7→ E{(Xt − K)+} need no longer be increasing, contradicting the usual
wisdom in the theory. The original purpose of this paper was to understand
this phenomenon better, motivated in particular by the role local martin-
gales play in financial bubbles (cf [16] and [17]). We are able to construct
an example where Merton’s famous mathematical finance “no early exer-
cise” theorem [24] does not hold. Our results indicate that one theoretically
possible way to detect a bubble is to analyze the behavior of European call
prices through time.
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2 A method to generate strict local martingales

We start with the proof of Proposition 1.

Proof of Proposition 1. Let us first show that N is a local martingale. Con-
sider the sequence of stopping times

σk := inf {s ≥ 0 : hs ≤ 1/k} .

Then, it is clear that P (limk→∞ σk =∞) = 1. Also, by the continuity of h,
at the stopping time σk, it takes value 1/k. Thus, for any bounded stopping
time τ , we get by the change of measure formula

EP (Nτ∧σk
) = EQ

(
hτ∧σk

1
hτ∧σk

fτ∧σk

)
= EQ (f0) .

Since Nτ∧σk
has the same expectation for all bounded stopping times τ ,

it follows that N·∧σk
is a martingale. The local martingale property now

follows.
To show now that it is not a martingale, we compute the expectation of

Nt. Note that, since h is a nonnegative Q-martingale, zero is an absorbing
state for the process. Thus, again applying the change of measure formula,
we get

EP (Nt) = EQ
(
ft1{τ0>t}

)
, (2)

where τ0 is the hitting time of zero for h.
Now suppose (i) {ft} is a uniformly integrable martingale andQ (τ0 <∞) =

1. By uniformly integrability we see from (2) that

lim
t→∞

EP (Nt) = 0

which shows that N is not a martingale, since EP (N0) = EQ(f0) is assumed
to be non-zero.

Finally suppose (ii) Q(σ0 > τ0) > 0 holds. Since zero is an absorbing
state for the nonnegative martingale f , by (1) there is a time t > 0 such
that Q({ft > 0} ∩ {τ0 ≤ t}) > 0. For that particular t, we get from (2) that

EP (Nt) < EQ(ft) = EQ(f0) = EP (N0).

This again proves that the expectation of Nt is not a constant. Hence it
cannot be a martingale.

The final assertion follows from (2) by noting that N , by virtue of being
a nonnegative local martingale, is a supermartingale which has a constant
expectation. Thus it must be a martingale.
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It is clear that some condition is necessary for the last theorem to hold
as can be seen by taking ft ≡ ht which results in a true martingale Nt ≡ 1.

Several examples of old and new strict local martingales follow from the
previous result by suitably choosing a change of measure and the process f .
We describe some classes of examples below.

2.1 Diffusions with different boundary behaviors

One of the earliest uses of change of measures was to condition a diffusion
to exhibit a particular boundary behavior. This typically involves a change
of measure that is locally strictly dominated. We give below two examples
to show how local martingales arise from such a set-up.

Example 1. The 3-dimensional Bessel process, BES(3), (see Karatzas &
Shreve [19, page 158] for the details) is the (strong) solution of the stochastic
differential equation:

dXt =
1
Xt
dt+ dβt, X0 = x0, (3)

where β is an one-dimensional standard Brownian motion. It is also the law
of the Euclidean norm of a three-dimensional Brownian motion. Since the
origin is polar for the three dimensional BM, the reciprocal of this process
is well-defined throughout. This reciprocal process, known as the inverse
Bessel process, serves as a prototypical example of a local martingale which
is not a martingale. The strictness holds in spite of the fact that the family
of random variables {1/Xt, t ≥ 0} is uniformly integrable on the entire
range of t.

This is an immediate example of Proposition 1. To see this let us call as
the canonical space, the space of continuous functions C[0,∞) together with
the right-continuous filtration obtained from the natural filtration generated
by the coordinate process. The laws of all continuous stochastic processes
are probability measures on this space.

Let Xt denote the coordinate process on the canonical space, and let Q
denote the Wiener measure such that Q(X0 = 1) = 1. Let τ0 denote the
first hitting time of zero, i.e., τ0 = inf{t ≥ 0, Xt = 0}. Then Xt∧τ0 is a
martingale under Q and E(Xt∧τ0) = 1. Define a probability measure P by
the domination relation

dP

dQ

∣∣∣∣∣
Ft

= Xt∧τ0 . (4)
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Then, it follows from Girsanov’s theorem ([30, page 327]), that under P , the
law of the coordinate process Xt is BES(3) with X0 = 1.

Now that 1/Xt is a strict local martingale under P is a corollary of
Proposition 1 by taking the process ft ≡ 1 and by noting that f is uniformly
integrable and Q(τ0 <∞) = 1.

Several other examples of the same spirit can be derived. In particular,
for any Bessel process X of dimension δ > 2, it is well-known that X2−δ is
a strict local martingale. This can be proved similarly as above using the
martingale Y δ−2, where Y is a Bessel process of dimension (4 − δ) (which
can be negative) absorbed at zero. See the article [2] for the details.

Example 2. The previous example can be easily extended to a multidimen-
sional form. Let D be an open bounded domain in Rn (n ≥ 2) where every
point on the boundary is regular (in the sense of [19, p. 245]). Consider
an n-dimensional Brownian motion X starting from a point x0 ∈ D getting
absorbed upon hitting the boundary of D, say ∂D. Let Q denote the law
of the process {Xt∧τD , t ≥ 0}. For any bounded measurable nonnegative
function u on ∂D, one can construct the following function

f(x0) = EQ (u (XτD) | X0 = x0) . (5)

By the Markov property, it follows that f(Xt∧τD) is a martingale. In fact,
f is the solution of the Dirichlet problem on D with boundary data u.

Let B1 be a connected (nontrivial) proper subset of the boundary ∂D,
and let the function u be one on B1 and zero elsewhere, i.e, u(x) = 1(x∈B1).
In that case, the resulting harmonic function in D is given by

v(x0) = Q (XτD ∈ B1 | X0 = x0) .

Again, by the tower property, h(Xt∧τD) = v(Xt∧τD)/v(x0) is a nonnega-
tive martingale starting from one. Let P denote the law defined by the
domination relation

dP/dQ
∣∣∣
Ft

= h(Xt∧τD).

This gives us a process law which can be interpreted as Brownian motion,
starting from x0, conditioned to exit through B1.

As a corollary of Proposition 1, we get the following result.

Proposition 2. Let u be any nonnegative function on ∂D such that u > 0 on
some subset of ∂D\B1 of positive Lebesgue measure. Let f be the harmonic
extension of u given by the formula (5). Then the process

Nt =
f(Xt∧τD)
v(Xt∧τD)
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is a strict local martingale under P .

Proof. Follows from Proposition 1 by verifying condition (ii) since u(XτD)
need not always be zero when XτD /∈ B1.

2.2 Size-biased sampling of diffusion paths

Another class of interesting examples follow in the case of the size-biased
change of measure. Size-biased sampling has been often discussed in con-
nection with discrete distributions, see, for example, the article by Pitman
[27] and the references within. It usually involves a finite or countable col-
lection of numbers {p1, p2, p3, . . .} such that each pi ≥ 0 and

∑
i pi = 1. A

size-biased sample from this collection refers to a sampling procedure where
the sample p̃ has the distribution

P (p̃ = pi) = pi, for all i = 1, 2, . . . .

One can now remove this chosen sample from the collection, renormalize it,
and repeat the procedure. This is closely connected to urn schemes where
each pi refers to the proportion of balls of a color i that is in an urn. If
one randomly selects a ball, the color of the chosen ball has the size-biased
distribution.

One can similarly develop a concept of size-biased sampling of diffusion
paths as described below. Consider n non-negative diffusions {X1, . . . , Xn}
running in time. Fix a time t, and look at the paths of the diffusions
during the time interval [0, t]. Denote these random continuous paths by
X1[0, t], X2[0, t], . . . , Xn[0, t]. Sample one of these random paths with a prob-
ability proportional to the terminal value Xi(t). That is, the sampled path
has the law

Y [0, t] = Xi[0, t], with probability
Xi(t)∑n
j=1Xj(t)

.

How can one describe the law of Y ? In general the law of Y might not
be consistently defined as time varies. Nevertheless there are cases where it
makes sense. We show below the example when each Xi is a Bessel square
process of dimension zero (BESQ0). This is the strong solution of the SDE

Zt = z + 2
∫ t

0

√
Zsdβs, z > 0,

where β is a one-dimensional Brownian motion. BESQ0 is a nonnegative
martingale also known as the Feller branching diffusion, in the sense that it
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represents the total surviving population of a critical Galton-Watson branch-
ing process. Indeed, our treatment here of size-biased transforms of BESQ
processes is inspired by size-biased transforms of Galton-Watson trees (see
the work by Lyons-Pemantle-Peres [22] and references to the prior literature
referred to there).

The interpretation of such dynamic size-biased sampling when everyXi is
a BESQ0 is straightforward. When each Xi has the law of Feller’s branching
diffusion, they represent a surviving population from n critical branching
processes. We can do size-biased sampling at different time points from
these populations. The construction below describes the joint law of these
samples.

Consider the canonical sample space for multidimensional diffusions, i.e.,
the n-dimensional continuous path space Cn[0,∞), coupled with the usual
right-continuous and complete filtration generated by the coordinate maps.
Let ωt = (ωt(1), ωt(2), . . . , ωt(n) denote a sample path. Also, as before,
we take ω[0, t] to denote the path during time-interval [0, t]. Let Q be the
joint law of n independent BESQ0 processes starting from positive points
(z(1), . . . , z(n)). To keep matters simple, we assume all the z(i)′s are the
same and equal to z. This induces the following exchangeability property.

Let Ti : Cn[0,∞) → Cn[0,∞) be an operator on the sample space such
that Tiω(1) = ω(i) and

Tiω(j + 1) = ω(j), if j < i, and, Tiω(j) = ω(j), if j > i. (6)

Thus, Ti puts the ith coordinate as the first, and shifts the others appropri-
ately. By our assumed exchangeability under Q, each Tiω has also the same
law Q. To define the size-biased change of measure we need the following
lemma.

Lemma 3. For any i, the process

Mt(i) =
ωt(i)

ωt(1) + . . .+ ωt(n)
, t ≥ 0,

is a martingale under Q.

Proof. Without loss of generality take i = 1. Let Z(1), Z(2), . . . , Z(n) be
independent BESQ0. The sum ζ = Z(1) + . . . + Z(n) is another BESQ0

process. Thus by Itô’s rule we get

d (Zt(1)/ζt) = Zt(1)d
(

1
ζt

)
+

1
ζt
dZt(1) + d

〈
Zt(1), ζ−1

t

〉
= local martingale +

Zt(1)
ζ3
t

4ζtdt−
4Zt(1)
ζ2
t

dt.
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This proves that the ratio process is a local martingale. But since it is
bounded, it must be a martingale.

Define the size-biased sampling law P on (Cn[0,∞), {Ft}) by

P (A) = EQ

[
n∑
i=1

ωt(i)
ωt(1) + · · ·+ ωt(n)

1{Tiω[0,t]∈A}

]
, for all A ∈ Ft. (7)

Note that, by Lemma 3, P defines a consistent probability measure on the
filtration {Ft}. We are now going to show that P is strictly locally domi-
nated by Q and compute the Radon-Nikodým derivative.

To see that, recall that, under Q, each Tiω has the same law Q. Thus,
we can simplify expression (7) to write

P (A) = nEQ
[

ωt(1)
ωt(1) + · · ·+ ωt(n)

1{ω[0,t]∈A}

]
, for all A ∈ Ft.

This proves that P << Q and the Radon-Nikodým derivative is given by

ht =
nωt(1)

ωt(1) + · · ·+ ωt(n)
.

Since under the BESQ0 law, every coordinate can hit zero and get absorbed,
the above relation is a locally strict domination and hence leads to examples
of strict local martingales.

As an immediate corollary of Proposition 1 we get the following result.

Proposition 4. Let (Z(1), . . . , Z(n)) be continuous processes whose law is
the size-biased sampled BESQ0 law P described above. Let ζt = Zt(1)+ . . .+
Zt(n) be the total sum process. Then the processes

Nt =
ζ2
t

Zt(1)
, Ut =

Zt(2)ζt
Zt(1)

, Vt =
ζt

Zt(1)

n∏
i=2

Zt(i), t ≥ 0,

are all strict local martingales. However, the process

Mt = ζt

n∏
i=2

Zt(i), t ≥ 0,

is a true martingale.

Proof. Let Z(1), . . . , Z(n) be iid BESQ0 processes starting from z > 0. Then
ζ, Z(2), and

∏n
i=2 Zt(i) are all true martingales which can remain positive

when Zt(1) = 0. The result now follows from Proposition 1, condition (ii).
On the other had, the process

∏n
i=1 Zt(i) is a martingale that always

hits zero before Zt(1). Thus, M is a true martingale.
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2.3 Non-colliding diffusions

Our third class of examples are cases when the change of measure leads
to non-intersecting paths of several linear diffusions. Probably the most
important example of this class is Dyson’s Brownian motion which is a
solution of the following n-dimensional SDE:

dλt(i) =
∑
j 6=i

2
λt(i)− λt(j)

dt+ dBt(i), t ≥ 0, i = 1, . . . , n. (8)

Here (B(1), . . . , B(n)) is an n-dimensional Brownian motion. It appears in
the context of Random Matrix Theory. Please see the survey article by
König [20] and the original paper by Dyson [7] for the details (including the
definition of the Gaussian Unitary Ensemble) and the proofs.

Theorem 1. For any i = 1, 2, . . . , n, and j > i, let {Mt(i, i), t ≥ 0},
{MR

t (i, j), t ≥ 0}, and {M I
t (i, j), t ≥ 0} be independent real standard

Brownian motions, starting at zero. The Hermitian random matrix Mt =
(Mt(i, j), 1 ≤ i, j ≤ n), with

Mt(i, j) = MR
t (i, j) + iM I

t (i, j), i < j,

has the distribution of the Gaussian Unitary Ensemble at time t = 1. Then
the process (λt, t ≥ 0) of n eigenvalues of Mt satisfies SDE (8). It can inter-
preted as a conditional Brownian motion in Rn, starting at zero, conditioned
to have

λt(1) < λt(2) < · · · < λt(n), for all t > 0.

What is interesting is that the process in (8) can be obtained as a strict
local domination relation from the n-dimensional Wiener measure using the
harmonic function

∆n(x) =
∏

1≤i<j≤n
(x(j)− x(i)), x = (x(1), . . . , x(n)),

which is the well-known Vandermonde determinant. That the function ∆n

is harmonic can be found in [20, p. 433] where it is shown that ∆n(Wt) is
a martingale when W is an n-dimensional Brownian motion and that the
law of the process in (8) (say P ) can be obtained from the n-dimensional
Wiener measure Q, by using ht = ∆n(Wt) as the Radon-Nikodým derivative.
Since ∆n(W ) is zero whenever any two Brownian coordinates W (i),W (j)
are equal (“collide”), we are in the scenario of Proposition 1. We prove the
following result.
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Proposition 5. Consider Dyson’s Brownian motion (λt(1), . . . , λt(n)) in
(8), and for some m < n consider the process

∆m(t) =
∏

1≤i<j≤m
(λt(j)− λt(i)), t ≥ 0.

Then the process Nt = ∆m(t)/∆n(t) is a strict local martingale. As a con-
sequence if we consider the Vandermonde matrix-valued process

At = (λj−1
t (i), i, j = 1, 2, . . . , n), t ≥ 0,

Then every process A−1
t (n, i) is a strict local martingale for i = 1, 2, . . . , n.

Proof. Note that, if W is an n-dimensional Brownian motion then ∆m(Wt),
for any m ≤ n, is a true martingale. Since m < n, it is possible to have
∆m(Wt) to be positive when ∆n(Wt) = 0. The result that N is a strict local
martingale now follows from Proposition 1.

For the second assertion we use adjoint relation for the inverse. Let
det(B) for a square matrix B refer to its determinant. Then

A−1
t (n, i) =

(−1)i+n

det(At)
det
(
Ât(i, n)

)
, i = 1, 2, . . . , n,

where Ât(i, n) is the matrix obtained from At by removing the ith row and
the nth column.

Now, At is the Vandermonde matrix, so its determinant is equal to ∆n(t).
If we remove the ith row and the nth column from At we get an (n−1)×(n−
1) order Vandermonde matrix of all the λj ’s except the ith. Its determinant
is again a Vandermonde determinant. Each of the ratios

det
(
Ât(i, n)

)
det(At)

,

is a strict local martingale by our earlier argument (for m = n − 1). This
completes the proof.

As a final area of applications of h-transforms which are locally strictly
dominated, let us mention the theory of measure-valued processes, in par-
ticular, the Dawson-Watanabe superprocesses. A well-known example is
conditioning a superprocess to survive forever, which can be done by chang-
ing the law of a superprocess by using the total mass process (which is a
martingale) as the Radon-Nikodým derivative. Please see the seminal article
in this direction by Evans & Perkins [10], the book by Etheridge [9], and a
follow-up article on similar other h-transforms by Overbeck [26].
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3 A converse to the previous result

As a converse to Proposition 1 it turns out that all strict local martingales
which remain strictly positive throughout can be obtained as the reciprocal
of a martingale under an h-transform. This was essentially proved by Del-
baen and Schachermayer [6] in 1995 in their analysis of arbitrage possibilities
in Bessel processes. We replicate their theorem below. The construction is
related to the Föllmer measure of a positive supermartingale [13].

Before we state the result we need a technique which adds an extra
absorbing point infinity to the state space R+, originally inspired by the
work of P. A. Meyer [25]. We follow closely the notation used in [6]. The
space of trajectories is the space C∞[0, T ] or C∞[0,∞) of continuous paths
ω defined on the time interval [0, T ] or [0,∞) with values in [0,∞] with
the extra property that if ω(t) = ∞, then ω(s) = ∞ for all s > t. The
topology endowed is the one associated with local uniform convergence. The
coordinate process is denoted by X, i.e., X(t) = ω(t).

Theorem 2 (Delbaen and Schachermayer, Theorem 4 in [6] ). If R is a
measure on C[0, 1] such that X is a strictly positive strict local martingale,
then

(i) there is a probability measure R∗ on C∞[0, 1] such that M = 1/X is
an R∗ martingale.

(ii) We may choose R∗ in such a way that the measure R is absolutely
continuous with respect to R∗ and its Radon-Nikodým derivative is
given by dR = M1dR

∗.

The following result is a corollary.

Proposition 6. Let R be a probability measure on C[0,∞) under which the
coordinate process Xt is a positive strict local martingale starting from one.
Then there exists a probability measure Q on the canonical space such that
X is a nonnegative martingale under Q and the following holds:

(i) The probability measure defined by

P (A) := EQ (Xt1A) , ∀ A ∈ Ft, t ≥ 0, (9)

is the law of the process {1/Xt, t ≥ 0} under R.

(ii) X is a strict local martingale if and only if Q(τ0 < ∞) > 0, where
τ0 = inf{t ≥ 0 : Xt = 0} is the first hitting time of zero.
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Proof. The only difference in the first part of this proposition with the
previous theorem is that the construction is on the entire space C[0,∞).
Note that, by scaling time, Theorem 2 holds for any time interval [0, T ],
T = 1, 2, . . .. In other words, for every positive integer T , there is a proba-
bility measure R∗T which satisfies the two conditions in Theorem 2 in time
interval [0, T ]. Let QT be the law of 1/X under R∗T up to time T . Once we
demonstrate that this tower of probability measures is consistent, it follows
from standard arguments that they induce a probability measure Q on the
entire space C[0,∞) with the required properties holding locally.

However, consistency is immediate once both the properties (i) and (ii)
in Theorem 2 hold for each interval [0, T ].

Part (ii) follows from Proposition 1.

4 Stochastic calculus with strict local martingales

Inspired by the previous representation theorem, we make the following
definition:

Definition. We call an ordered pair probability measures (R,Q), defined
on the canonical sample space of continuous paths, a Girsanov pair if

1. under R, the coordinate process Xt is a positive strict local martingale
starting from one;

2. under Q the process Xt is a nonnegative martingale;

3. The laws R and Q are related by Proposition 6.

The advantage of Proposition 6 is that it allows us to transport stochastic
calculus with respect to strict local martingales to that with actual martin-
gales via a change of measure.

Proposition 7. Let (R,Q) be a Girsanov pair of probability laws. Also let
τ0 denote the hitting time of zero.

Consider any nonnegative function h : (0,∞) → R+. For any bounded
stopping time τ , we get

ER (h(Xτ )) = EQg(Xτ )1{τ0>τ}. (10)

Here g is the function g(x) = xh(1/x), for all x > 0.
Now suppose limx→0 g(x) = η < ∞. Define a map ḡ : [0,∞) → R by

extending g continuously, i.e., ḡ(x) = g(x) for x > 0, and ḡ(0) = η. Then
we have

ER (h(Xτ )) = EQḡ(Xτ )− ηQ (τ0 ≤ τ) . (11)
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Before we prove the statement above, as an example note that when
h(x) = (x− a)+ for some a ≥ 0, we get

ER (Xτ − a)+ = EQ (1− aXτ )+ −Q(τ0 ≤ τ). (12)

Proof of Proposition 7. This is immediate from the absolute continuity rela-
tionship between the laws of the two processes. Note that, by nonnegativity
of the martingale M , we have Mτ = Mτ∧τ0 = Mτ1{τ0>τ}. One gets

ERh(Xτ ) = EQXτh

(
1
Xτ

)
1{τ0>τ} = EQg(Xτ )1{τ0>τ}.

For the second assertion assume that one can define ḡ(0) = η by contin-
uously extending g. Now for any nonnegative path ω which gets absorbed
upon hitting zero, the following is an algebraic identity:

g(ωτ )1{τ0>t} = g(ωτ )− η1{τ0≤τ}.

In particular this identity holds pathwise when ω is a path of a nonnegative
martingale M . Taking expectation on both sides of the last equation with
respect to the law of M , we obtain

EQg(Xτ )1{τ0>t} = EQḡ(Xτ )− ηQ(τ0 ≤ t).

This proves the proposition.

Corollary 1. Let h : (0,∞) → (0,∞) be a function which is sublinear at
infinity, i.e.,

lim
x→∞

h(x)
x

= 0. (13)

Then, for all bounded stopping times τ , one has

ERh(Xτ ) = EQḡ(Xτ ), ḡ(x) = xh(1/x), x > 0, ḡ(0) = 0. (14)

Proof. The first part follows directly from (11) since

η = lim
x→0

xh

(
1
x

)
= lim

x→∞

h(x)
x

= 0.

The second conclusion is obvious.
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The previous corollary has some interesting consequences. For example,
when h is convex, it is not difficult to verify that so is ḡ. And thus both
h(X) and ḡ(X) are submartingales (under R and Q respectively) by (14).
This is in spite of the strictness in the local martingale property of the
coordinate process under R. Additionally, if h is symmetric with respect
to inverting x, i.e. h(x) = xh(1/x), then ḡ = h. Hence strictness of local
martingales have no effect when these functions are applied. For example,
ER
√
Xτ = EQ

√
Xτ .

Before we end, let us mention that a more precise result can be obtained
from the semimartingale decomposition formulas of Madan and Yor [23].

5 Convex functions of strict local martingales

Strict local martingales are known for odd behavior which is not shared by
martingales. For example, a convex function of a martingale is always a
submartingale. This need not be the case with local martingales. However
if N is a nonnegative strict local martingale, and h is a convex function
sublinear at infinity, then h(Nt) is again a submartingale. This is in contrast
to functions which are linear at infinity. For example, in the case of h(x) = x,
the process is actually a supermartingale. Here we demonstrate another
example, for the function (x−K)+ with K > 0.

5.1 A curious property of the inverse Bessel process

Proposition 8. Let Xt be a BES(3) process starting from one. For any
real K ∈ [0, 1/2], the function t 7→ E{(1/Xt − K)+} is strictly decreasing
for all t ∈ (0,∞). However, if K > 1/2, the function t 7→ E{(1/Xt −K)+}
is initially increasing and then strictly decreasing for

t ≥
(
K log

2K + 1
2K − 1

)−1

.

Remark: Note that the bound on the right side becomes zero when K = 1/2
which demonstrates its sharpness.

Proof of Proposition 8. We use the change of measure relationship (4). Let
B be a one-dimensional Brownian motion starting from one and absorbed
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at zero. We deduce the following identity

h(t) := E

{(
1
Xt
−K

)+
}

= E

{
Bt∧τ0

(
1
Bt
−K

)+
}

= E
[
(1−KBt)+ 1{τ0>t}

]
= E(1−KBt∧τ0)+ − P (τ0 ≤ t).

where τ0 is the hitting time of zero for the Brownian motion B.
If we take derivatives with respect to t in the equation above, we get

h′(t) =
d

dt
E(1−KBt∧τ0)+ − d

dt
P (τ0 ≤ t)

=
K

2
d

dt
EL

1/K
t∧τ0 −

d

dt
P (τ0 ≤ t).

(15)

The second equality above is due to Tanaka formula.
Now the second term on the right side of (15) above is the density of the

first hitting time of zero, which we know ([19, page 80]) to be

1√
2πt3

e−1/2t. (16)

To compute the first term on the right of (15) we have the following claim.

Lemma 9. Suppose {Xt, t ≥ 0} is a continuous nonnegative local martin-
gale which satisfies the following SDE

dXt = σ(t,Xt)dβt, t ∈ [0,∞), X0 = 1. (17)

Here β is a one-dimensional standard Brownian motion and σ(t, x) is some
measurable nonnegative function on R+ × R+.

Further assume that the process Xt admits a continuous marginal density
at each time t at every strict positive point y which is given by

pt(y) = P
(
Xt ∈ dy

∣∣∣ X0 = 1
)
, y > 0.

Let Lat denote the local time of X at level a > 0 and at time t. Then

d

dt
E (Lat ) = σ2(t, a)pt(a). (18)
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Using the previous lemma, we can explicitly compute the right side of
equation (15). Recall (see [19, page 97]) that for x, y, and t strictly positive
the transition function of Brownian motion absorbed at zero is given by

p(t, x, y) :=
1√
2πt

[
exp

(
−(y − x)2

2t

)
− exp

(
−(y + x)2

2t

)]
.

Thus, combining (15), (16), and (18), we get

h′(t) =
K

2
√

2πt

[
e−(1−1/K)2/2t − e−(1+1/K)2/2t

]
− 1√

2πt3
e−1/2t. (19)

Thus, h′(t) < 0 if and only of

2
Kt

> e1/2t
[
e−(1−1/K)2/2t − e−(1+1/K)2/2t

]
= exp

[
(2K − 1)

2K2t

]
− exp

[
−(2K + 1)

2K2t

]
.

(20)

We need to do a bit more work. Let t = 1/y. Consider the function
on the right side of the last inequality. We need to consider two separate
cases. First suppose K > 1/2. Then both 2K − 1 and 2K + 1 are positive.
If for two positive parameters λ2 > λ1 > 0, we define a function q by
q(y) = exp(λ1y)− exp(−λ2y), y > 0, it then follows that

q′(y) = λ1e
λ1y + λ2e

−λ2y, q′(0) = λ1 + λ2,

q′′(y) = λ2
1e
λ1y − λ2

2e
−λ2y.

(21)

Note that q′′(y) < 0, for all

0 ≤ y < 2 log (λ2/λ1)
λ1 + λ2

. (22)

Since q′(y) is always positive, it follows that q is an increasing concave
function starting from zero in the interval given by (22). Thus it also follows
that, in that interval,

q(y) = q(y)− q(0) < yq′(0) = y (λ1 + λ2) . (23)

Take λ1 = (2K−1)/2K2 and λ2 = (2K+1)/2K2. Then λ1 +λ2 = 2/K.
By (22) we get that if

y ≤ C1 := K log
2K + 1
2K − 1

,
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then, from (23) it follows

K

{
exp

[
(2K − 1)y

2K2

]
− exp

[
−(2K + 1)y

2K2

]}
< 2y.

That is, by (20), h′(t) < 0, i.e., h is strictly decreasing for all

t >

(
K log

2K + 1
2K − 1

)−1

.

The case when 0 < K ≤ 1/2 can handled similarly. Suppose 0 < λ1 < λ2

are positive constants. Consider the function

r(y) = −λ1y + λ2y − e−λ1y + e−λ2y, y ∈ [0,∞).

Then r(0) = 0, and

r′(y) = −λ1

(
1− e−λ1y

)
+ λ2

(
1− e−λ2y

)
> 0, y ∈ [0,∞),

because λ1 < λ2. Thus, for all positive y, we have r(y) > 0, i.e.,

e−λ1y − e−λ2y < (−λ1 + λ2)y.

We use this for λ1 = (1− 2K)/2K2 and λ2 = (1 + 2K)/2K2. Note that, as
before

(−λ1 + λ2)y = 2y/K.

From (20) it follows that h′(t) > 0 for all t ∈ (0,∞). Thus we have estab-
lished that if K ≤ 1/2, the function t 7→ E(1/Xt−K)+ is strictly decreasing
for all t ∈ (0,∞). This completes the proof of the proposition.

Proof of Lemma 9. Several conditions for the existence and uniqueness of
such a one-dimensional equation which does not explode can be found in
the literature. For example, it is sufficient to have Lipschitz continuity in
space, and joint measurability (see, for example [29, Chapter V, Section 3]).

To prove this, we use the occupation time formula involving the local
time for general continuous semimartingales.

For any smooth nonnegative function f : R→ R+ with compact support
contained in (0,∞), we have the following identity∫

R+

f(a)Lat da =
∫ t

0
f(Xs)d〈X〉s =

∫ t

0
f(Xs)σ2(s,Xs)ds,
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where the final identity follows from (17). Now taking expectations on both
sides, we obtain

E

[∫
R+

f(a)Lat da
]

= E

∫ t

0
f(Xs)σ2(s,Xs)ds =

∫ t

0
E
[
f(Xs)σ2(s,Xs)

]
ds

=
∫ t

0

[∫
R+

f(a)σ2(s, a)ps(a)da
]
ds.

(24)

The second equality above is due to Fubini-Tonelli for nonnegative inte-
grands. The final equality is by definition of the marginal density and the
fact that the support of f is in (0,∞).

Applying Fubini-Tonelli repeatedly and interchanging the orders of in-
tegration on both sides of (24), we get∫

R+

f(a)E(Lat )da = E

[∫
R+

f(a)Lat da
]

=
∫ t

0

[∫
R+

f(a)σ2(s, a)ps(a)da
]
ds

=
∫

R+

f(a)
[∫ t

0
σ2(s, a)ps(a)ds

]
da.

Since this holds for all smooth nonnegative functions f with compact
support in (0,∞), it follows that

E(Lat ) =
∫ t

0
σ2(s, a)ps(a)ds, ∀ a > 0.

The conclusion of the lemma follows.

For mathematical completeness we show below that a similar result can
be proved for the Bessel process starting from zero, although in this case
there is no dependence on K. The proof is much simpler and essentially
follows by a scaling argument. Note that, even in this case the reciprocal of
the Bessel process is well-defined for all times except at time zero. Hence
1/Xt, t ∈ (0,∞), can be thought as a Markov process with an entrance
distribution, i.e., a pair consisting of a time-homogenous Markov transition
kernel {Pt}, t > 0, and a family of probability measures {µs}, s > 0, satis-
fying the constraint µs ∗Pt = Pt+s. Here ∗ refers to the action of the kernel
on the measure.

Proposition 10. Let Xt be a 3-dimensional Bessel process, BES(3), such
that X0 = 0. For any two time points u > t > 0, and for K ≥ 0, one has

E

(
1
Xu
−K

)+

< E

(
1
Xt
−K

)+

. (25)
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Proof. Fix u > t. Recall that BES(3), being the norm of a three dimensional
Brownian motion, has the Brownian scaling property when starting from
zero. That is to say, for any c > 0,(

1√
c
Xcs, s ≥ 0

)
L= ( Xs, s ≥ 0 ) ,

where the above equality is equality in law.
Take c = u/t, and apply the above equality for Xs when s = t, to infer

that c−1/2Xu has the same law as Xt, and thus

E

(
1
Xu
−K

)+

= E

(
c−1/2

Xt
−K

)+

= c−1/2E

(
1
Xt
−
√
cK

)+

. (26)

Note that for any σ > 1, we have (x− σK)+ /σ < (x−K)+, ∀ x > 0.
Since c > 1, taking σ =

√
c, one deduces from (26)

E

(
1
Xu
−K

)+

< E

(
1
Xt
−K

)+

,

which proves the result.

We conclude this subsection with an example of a strict local martingale
S where E(St − K)+ is not asymptotically decreasing for any K. This,
coupled with the earlier Bessel result, establishes the fact that functions
which are not sublinear at infinity can display a variety of characteristics
when applied to strict local martingales.

We inductively construct a process in successive intervals [i, i+ 1) by the
following recipe. The process starts at zero. The process in the odd interval
[2i, 2i+1) is an exponential Brownian motion exp(Bt−t/2) starting from S2i

and independent of the past. On the even intervals [2i+1, 2i+2) the process
S is an inverse Bessel process starting from S2i+1 and again independent of
the past. The constructed process is always a positive local martingale. The
value of the function E(St −K)+ is increasing in the odd intervals due to
the martingale component, and decreasing (at least when K ≤ 1/2) in the
Bessel component by Proposition 8.

One might object to the fact that this process is not strict local through-
out. But, one can mix the two components, by a sequence of coin tosses
which decides whether to use Brownian or the Bessel component in the cor-
responding interval. By choosing the probability of heads in these coins in
a suitably predictable manner, we can generate a local martingale which is
strict throughout but E(St −K)+ does not decrease anywhere.
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5.2 A multidimensional analogue by Kelvin transform

In the last section we saw that for any strict local martingale law R there is
a true martingale law Q such that equality (10) holds. The transformation
g(x) = xh(1/x) has a well-known analogue in dimensions higher than two
called the Kelvin transform. In our final subsection we present an interesting
multidimensional generalization of our results for dimensions d > 2. We take
the following definition from the excellent book on harmonic function theory
[1, Chapter 4] by Axler, Bourdon, and Ramey.

The Kelvin transform K is an operator acting on the space of real func-
tions u on a subset of Rd\{0}. Let u be a C2 function on an open subset D
of Rd\{0}. Let D∗ be the image of D under the inversion map

x 7→ x∗ = x/ |x|2 .

For such a u, we define a function K[u] : D∗ → R by the formula

K[u](y) = |y|2−d u
(
y/|y|2

)
. (27)

Notice that K is its own inverse.
The most striking property of this transform is that K commutes with

the Laplacian ([1, page 62]). Let v be the function v(x) = |x|4 ∆u(x), x ∈ D.
Then, at any point y ∈ D∗, we have

∆K[u](y) = K [v] (y). (28)

In particular, if u is harmonic in D (i.e., ∆u = 0), then K[u] is harmonic in
D∗. Also, if u is subharmonic (i.e., ∆u ≥ 0), then so is K[u].

Now, in one dimension, every local martingale is a time-changed Brow-
nian motion. This can be generalized in higher dimensions by considering a
d-dimensional conformal local martingale, i.e., a process (X1, . . . , Xn) such
that each coordinate Xi is a local martingale and

〈Xi, Xj〉 = 〈X1〉 1{i=j}, for all 1 ≤ i, j ≤ d.

We consider it to be strictly local if at least one of its coordinate processes is
a strict local martingale. We replace the condition of nonnegativity of one
dimensional processes by restricting our multidimensional processes in the
complement of a compact neighborhood of zero.

Proposition 11. Let D be a compact neighborhood of the origin and denote
its complement Rd\D by Dc. Let P be a probability measure on the canonical
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sample space such that, under P , the coordinate process X is a conformal
local martingale in Rd (X0 = x0 ∈ Dc) absorbed upon hitting the boundary of
D. Then there is a probability measure Q such that, under Q, the coordinate
process is a true conformal martingale which takes values in D∗. Moreover,
for any function U : Dc → R, and for any bounded stopping time τ , we have

|x0|2−dEP [U (Xτ )] = EQ
[
|Xτ |2−d U

(
Xτ

|Xτ |2

)]
. (29)

The proof requires the following lemmas.

Lemma 12. Let |·| denote the Euclidean norm in dimension d. Let τ1 be
the hitting time of D i.e.,

τ1 = inf {t ≥ 0 : Xt ∈ D} .

Then, the process |Xt∧τ1 |
2−d , t ≥ 0, is a martingale.

Proof. The function |x|2−d is harmonic in Rd. Thus |Xt|2−d is a local mar-
tingale itself. Since it is bounded in Dc, it must be a true martingale.

Suppose X0 = x0 ∈ Dc. We can change the law of X by using |Xt∧τ1 |
2−d

as a Radon-Nikodým derivative (after normalizing). We get the following
lemma.

Lemma 13. Suppose X0 = x0 such that x0 ∈ Dc. We change P by using
the positive martingale

φ(Xt) = |Xt∧τ1 |
2−d / |x0|2−d

as a Radon-Nikodým derivative. Call this measure Q∗. Under Q∗, the pro-
cess

Yt =
Xt∧τ1
|Xt∧τ1 |

2 (30)

is again a d-dimensional conformal local martingale such that every coordi-
nate process Y is a true martingale.

Proof of Lemma 13. Note that, since D is a neighborhood of zero, the set
(Dc)∗ is compact. Thus, Y lives in a bounded set. To show that the ith
coordinate process Y (i) is a local martingale, we use the harmonic function

u(x) = xi on Ω = Rn\{0}.
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By (28), its Kelvin transform is also harmonic. Hence the process

|Xt|2−d u
(
Xt/ |Xt|2

)
= |Xt|−dXt(i)

is a local martingale under P . But, since |Xt|2−d (until τ1) is used as a
Radon-Nikodým derivative after being scaled, by Bayes rule [19, page 193],
the process u

(
Xt∧τ1/ |Xt∧τ1 |

2
)

is a local martingale under the changed mea-
sure Q∗. But this implies that Y (i) is a local martingale under Q∗. But,
since every Y (i) is bounded they must be true martingales.

To show that Y is conformal, we use the harmonic function u(x) = xixj
again on the full domain Rn\{0} for any pair of coordinates i 6= j. Exactly
as in the previous paragraph, we infer from (28) that Yt(i)Yt(j) is a local
martingale under Q. But this implies 〈Y (i), Y (j)〉 ≡ 0. That their quadratic
variations must be the same follows from symmetry.

Proof of Proposition 11. The construction of Q has been done in Lemma
13 where it is the law of the process Y under Q∗. Note that the Randon-
Nikodým derivative φ(Xt) never hits zero. Thus, even under Q∗, the process
Y never hits zero. To show the equality (29), we use the change of measure
to get

EQ
∗
[
|Yτ |2−d U

(
Yτ

|Yτ |2

)]
= |x0|d−2EP

[
|Xτ |2−d |Xτ |d−2 U (Xτ )

]
,

which is equal to |x0|d−1EP [U(Xτ )]. This proves the result.

6 Applications to financial bubbles

A natural question is: what happens to a financial market when the no
arbitrage condition yields a strict local martingale (rather than a true mar-
tingale) under a risk neutral measure? Several authors have looked at this
problem and offered solutions to anomalies which might result from the lack
of the martingale property. One interesting perspective offered in this di-
rection is the theory of price bubbles as argued in 2000 by Loewenstein and
Willard [21]. They propose that to identify a bubble one needs to look
at the difference between the market price of an asset and its fundamen-
tal price. Their argument is later complemented and further developed by
Cox and Hobson [4] and the two articles by Jarrow, Protter, and Shimbo
[16], [17]. Please see the latter articles for the definitions of the market
and the fundamental prices of an asset and any of the other financial terms
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that follow. In particular, the authors in [16] and [17] classify bubbles into
three types in an arbitrage-free market satisfying Merton’s No Dominance
condition (see [16] or [24]). One, in which the difference between the two
price processes under an equivalent local martingale measure is a uniformly
integrable martingale; two, when it is a martingale but non-uniformly in-
tegrable; and last, when it is a strict local martingale. In a static market
with infinite horizon, for a stock which pays no dividends, Example 5.4 in
[17] shows that the difference between the two prices is actually the current
market price of the stock. Thus a stock price which behaves as a strict local
martingale under an equivalent local martingale measure is an example of a
price bubble of the third kind. Cox and Hobson [4], too, use this definition
of stock price bubbles. They further furnish several interesting examples
of bubbles both where volatility increases with price levels, and where the
bubble is the result of a feedback mechanism. They go on to exhibit (among
other things) how in the presence of bubbles put-call parity might not hold
and call prices do not tend to zero as strike tends to infinity.

We consider a market with a single risky asset (stock) and zero spot
interest rate. Let {St}, t ∈ (0,∞), be a positive continuous strict local
martingale which models the discounted price of the (non-dividend paying)
stock under an equivalent local martingale measure. We have the following
result which follows immediately from Corollary 1 and the subsequent Bessel
example.

Proposition 14. Suppose for a European option, the discounted pay-off at
time T is given by a convex function h(ST ) which is sublinear at infinity,
i.e., limx→∞ h(x)/x = 0. Then the price of the option is increasing with the
time to maturity, T , whether or not a bubble is present in the market. In
other words, E(h(ST )) is an increasing function of T . For example, consider
the put option with a pay-off (K − x)+.

However, for a European call option, the price of the option E(ST −K)+

with strike K might decrease as the maturity increases.

This feature may seem strange at first glance, but if we assume the
existence of a financial bubble, the intuition is that it is advantageous to
purchase a call with a short expiration time, since at the beginning of a
bubble prices rise, sometimes dramatically. However in the long run it is
disadvantageous to have a call, increasingly so as time increases, since the
likelihood of a crash in the bubble taking place increases with time.

Of course, pricing a European option by the usual formula when the
underlying asset price is a strict local martingale is itself controversial. For
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example, Heston, Loewenstein, and Willard [14] observe that under the ex-
istence of bubbles in the underlying price process, put-call parity might not
hold, American calls have no optimal exercise policy, and lookback calls have
infinite value. Madan and Yor [23] have recently argued that when the un-
derlying price process is a strict local martingale, the price of a European call
option with strike rate K should be modified as limn→∞E [(ST∧Tn −K)+],
where Tn = inf {t ≥ 0 : St ≥ n}, n ∈ N, is a sequence of hitting times. This
proposal does however, in effect, try to hide the presence of a bubble and act
as if the price process is a true martingale under the risk neutral measure,
rather than a strict local martingale.

Let us also mention that a different approach to such market anoma-
lies has been studied extensively in Fernholz and Karatzas [11], Fernholz,
Karatzas, and Kardaras [12], and Karatzas and Kardaras [18]. In [11] the
authors investigate the case when the candidate Radon-Nikodým derivative
for the risk-neutral measure turns out to be a strict local martingale. See
Proposition 3.4 (also Remark 4.2) for the details. This is intimately con-
nected with what the authors call a weakly diverse market which results in
a number of anomalies similar to the case of bubbles. For example, put-call
parity fails to hold in such markets. See, Remark 9.1 and 9.3 in [12]. Also
see Example 9.2 for anomalies in the price of European call option.
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