Bubbles and futures contracts in markets with short-selling constraints

Sergio Pulido, Cornell University PhD committee: Philip Protter, Robert Jarrow

3rd WCMF, Santa Barbara, California November 13th, 2009

(日) (四) (三) (三)

1 Motivation

2 The FTAP with no short-selling

4 Completing with futures

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

1 Motivation

Motivation

- The **current financial crisis** is, to a large extent, a product of the burst of the alleged real estate bubble.
- Massive short-selling after the burst of a financial bubble.
- Short-selling ban, September 2008: U.S. Securities and Exchange Commission (SEC) and U.K. Financial Services Authority (FSA).
- In most of the **third world emerging markets** the practice of short-selling is not allowed.

<ロト <回ト < 三ト < 三ト

Local martingale approach to bubbles

• Jarrow, Protter and Shimbo (2006, 2008) and Cox and Hobson (2005):

(NFLVR) strategies with bounded liabilities

$$\Leftrightarrow \mathcal{M}_{loc}(S) \neq \emptyset$$

イロト イヨト イヨト

Valuation measure $Q^* \in \mathcal{M}_{loc}(S) \setminus \mathcal{M}_{mar}(S) \Rightarrow$ Bubbles

$$E^{Q^*}[S_T] < S_0$$

2 The FTAP with no short-selling

- 3 Hedging with no short-selling
- 4 Completing with futures

The model

- Reference filtered probability space: $(\Omega, \mathcal{F}, \mathbb{F}, P)$.
- Price process: (S_t)_{0≤t≤T} a nonnegative locally bounded semi-martingale.
- Money market account: $R_t \equiv 1$.
- The admissible strategies:

$$\mathcal{A}:=\left\{H\in L(S): H_0=0, \ H\geq 0, \ \int_0^\cdot H\cdot S\geq -lpha, ext{ for some } lpha>0
ight\}.$$

• Payoffs of zero initial value portfolios:

$$\mathcal{K} := \left\{ \int_0^T H_s \, dS_s : H \in \mathcal{A} \right\} \subset L^0(\Omega, \mathcal{F}, P).$$

 \bullet Bounded payoffs dominated by elements of $\mathcal{K} \text{:}$

$$\mathcal{C}:=(\mathcal{K}-L^0_+(\Omega,\mathcal{F},P))\cap L^\infty(\Omega,\mathcal{F},P)\subset L^\infty(\Omega,\mathcal{F},P).$$

イロト イヨト イヨト イヨト

The FTAP under short-selling prohibition

Theorem

Let $\mathcal{M}_{sup}(S)$ be the set of probability measures $Q \sim P$ such that S is a Q-supermartingale. Then

(NFLVR)
$$\Leftrightarrow \overline{\mathcal{C}} \cap L^{\infty}_{+}(\Omega, \mathcal{F}, P) = \{0\} \Leftrightarrow \mathcal{M}_{sup}(S) \neq \emptyset.$$

Related results:

- L^2 case for simple strategies: Jouini and Kallal (1995).
- Simple predictable strategies in L^{∞} : Frittelli (1997).

<ロト < 回 > < 回 > < 回 > . < 回 > .

A key observation

Proposition (Extension of Ansel and Stricker, 1994)

$$\mathcal{M}_{sup}(S) = \left\{ Q \sim P : \int_0^{\cdot} H \, dS \text{ is a } Q \text{-supermartingale for all } H \in \mathcal{A} \right\}.$$

E

The FTAP with no short-selling

Replication under short selling prohibition

Theorem (Extension of Ansel and Stricker, 1994)

Suppose $\mathcal{M}_{sup}(S) \neq \emptyset$. For $f_T \in L^0_+(\Omega, \mathcal{F}, P)$ TFAE

- (i) $f_T = x + \int_0^T H_s \, dS_s$ with x constant and $H \in \mathcal{A}$ such that $\int_0^{\cdot} H_s \, dS_s$ is a Q^* -martingale for some $Q^* \in \mathcal{M}_{sup}(S)$.
- (ii) There exists $Q^* \in \mathcal{M}_{sup}(S)$ such that

$$\sup_{Q \in \mathcal{M}_{sup}(S)} E^Q[f_T] = E^{Q^*}[f_T] < \infty$$

This theorem is a corollary of a more general result proved by Föllmer & Kramkov (1997).

Example

If the price process is continuous (and nonconstant) the payoff $f_T = 1_{(S_T < S_0)}$ cannot be perfectly replicated without short-selling.

2 The FTAP with no short-selling

Futures contracts

Purchase of S at time T via prearranged payment procedure. Importance: (1) Cash-flow depends on market valuation (2) Very liquid derivatives.

Definition (Karatzas and Shreve, Methods of Mathematical Finance)

A futures contract on S with maturity time T is a financial instrument with associated stream of cash-flows $F_{t,T}$, such that

- (i) $F_{t,T}$ is a nonnegative \mathbb{F} -adapted semi-martingale with $F_{T,T} = S_T$.
- (ii) The market price of the stream of cash-flows $(F_{t,T})_t$ is zero at all times.

 $F_{t,T}$ is known as the futures price process.

If this contract can be sold short, in the extended market

 $(\mathsf{NFLVR}) \Leftrightarrow | F_{t,T} \text{ is a } Q \text{-local martingale for some } Q \in \mathcal{M}_{sup}(S)$

Completing with futures

Theorem (Completing with futures - No interest rates)

Suppose that S is positive and continuous, $\mathcal{M}_{loc}(S) = \{P\}$ and $Q \in \mathcal{M}_{sup}(S)$. If

$$S = M - A = \mathcal{E}(-B)\mathcal{E}(N),$$

with $M, \mathcal{E}(N)$ Q-martingales and A, B increasing,

$$F_{t,T} = E^Q[S_T | \mathcal{F}_t].$$

and B is deterministic then $\mathcal{M}_{loc}(F_{\cdot,T}) = \{Q\}.$

Lemma

Suppose that S is positive and continuous, $\mathcal{M}_{loc}(S) = \{P\}$, $Q \in \mathcal{M}_{sup}(S)$ and S = M - A is the Doob-Meyer decomposition of S under Q. Then

$$\mathcal{M}_{loc}(M) = \{Q\}.$$

Pathological examples

• Cox and Hobson 2005

$$S = 1 + \mathcal{E}\left(\int_0^{\cdot} \frac{dB_s}{\sqrt{T-s}}\right).$$

Strict local martingale $S_T \equiv 1$, hence $F_{t,T} \equiv 1$.

• Binary tree

Open question

Suppose that $|\mathcal{M}_{loc}(S)| = 1$.

• Find necessary and sufficient conditions on $Q \in \mathcal{M}_{sup}(S)$ under which the futures (+ bonds) market is complete.

イロト イヨト イヨト イヨト

Thank you! Questions?

Bubbles and futures contracts in markets with short-selling constraints

1

< 日 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- Ansel J.-P. and Stricker C. Couverture des actifs contingents et prix maximum; Annales de l'I.H.P. Probabilits et statistiques, vol. 30, no. 2, pp. 303-315, 1994.
- Föllmer H. and Kramkov D. Optional decompositions under constraints; Probability Theory and Related Fields, vol. 109, no. 1, 1997.
- Frittelli M. Semimartingales and asset pricing under constraints; Mathematics of Derivative Securities, S. Pliska, M.A.H. Dempster eds., Newton Institute for Mathematical Science, Cambridge University Press, pp. 265-277, 1997.
- Jarrow R. Protter P. and Shimbo K. Asset price bubbles in a complete market; Advances in Mathematical Finance, In Honor of Dilip B. Madan, pp 105-130, 2006.
- Jarrow R. Protter P. and Shimbo K. Asset price bubbles in incomplete markets; forthcoming, 2009.
- Jouini E. and Kallal H. Arbitrage in securities markets with short-sales constraints; Mathematical Finance, vol. 5, Issue 3, pp 197-232, 1995.

Current work and open questions

- Minimal entropy and minimal variance super-martingale measures.
- Specific models analysis: Stochastic volatility, models with jumps.
- More general conditions on Q to assure completeness.
- Liquidity aspects

Air China Ltd: Shanghai Vs Hong Kong

- 4 回 ト - 4 回 ト