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1. Motivation

• This is a pure jump model and hence avoids the theoretical drawbacks of continuous
path models. For example, the quadratic variation is not observable.

• Take into account the fact that stock prices move on the discrete grid in multiples
of tick.

• Unlike general models with jumps, one can set up derivative security hedging with
Birth-Death process.



2. Birth & Death Model

Perrakis(1988), Korn et. al.(1998)
Stock Price St. Jump size ±c.
Nt = c× St is a birth and death process.
Probability that jump size Yt = 1 is pt.
Such a process can be considered as a discretized version of the Black-Scholes model if
the intensity of jumps is proportional to N2

t .
Consider processes with intensity λtN

2
t .

• λt is a constant.

• λt a stochastic process and Nt is a birth and death process conditional on the λt

process.

Let the measure associated with the process Nt be P .
Let ξ(t) be the underlying process of event times.
So dξ(t) = 1 if there is a jump at time t.
dS(t) = cY (t)dξ(t)

From martingale/ no arbitrage considerations, pt = 1
2
(1+

rt−λt
2

Ntλt
) where rt is the risk-free

interest rate.



3. Convergence

Let the jump size go to zero and the rate of jumps go to infinity. Then the birth and
death process described converges to geometric Brownian motion.

Denote S
(n)
t the birth and death process with step size c = 1/n.

Let X
(n)
t = ln(S

(n)
t ) and X

∗(n)
t = X

(n)
t −

∫ t

0
E[ln(1 + Yu

Nu
)]N2

uλudu−X
(n)
0

Step(1): ∀u > 0, E[ln(1 + Yu

Nu
)]N2

uλu = (2pu − 1)Nuλu + O(1/n)
P−→ ru − λu

2

Step(2): ∀t > 0, [X
∗(n)
t , X

∗(n)
t ]t

P−→
∫ t

0
λudu

Step(3): X
∗(n)
t local martingale.

(2),(3) and Thm VIII.3.12 of Jacod and Shiryaev imply

X∗(n) d
=⇒ BM(0,

∫ t

0

λudu)

This and (1) imply X(n) d
=⇒ X, where Xt = BM(X0 +

∫ t

0
(ru − λu

2
)du,

∫ t

0
λudu)

X(n) d
=⇒ X, S(n) = exp(X(n))

d
=⇒ exp(X), since exp is continuous function.

By Ito’s formula, d(eXt) = St[(rt − λt

2
)dt +

√
λtdWt] + 1

2
Stλtdt = Strtdt + St

√
λtdWt



4. Edgeworth expansion for Option Prices

Let us define X
(n)
t = ln(

N
(n)
t

n
)

X
∗(n)
t = X

(n)
t −X

(n)
0 −

∫ t

0

[pu,Nu log(1 +
1

Nu

)

+(1− pu,Nu) log(1− 1

Nu

)]N2
uσ2

udu

where pt,Nt = 1
2
(1 + ρt

Ntσ2
t
).

Let C be the class of functions g that satisfy the following:
(i)

∫
| ĝ(x) | dx < ∞, uniformly in C, and {

∑
u x2

uĝ(x), g ∈ C} is uniformly integrable
(here, ĝ is the Fourier transform of g, which must exist for each g ∈ C); or
(ii) g nd g′′ bounded, uniformy in C, and with g′′ equicontinuous almost everywhere
(under Lebesgue measure).
Under assumptions (I1) and (I2), for any g ∈ C,

Eg(X
∗(n)
T ) = Eg(N(0, λT )) + o(1/n)

(I1) There are k, k̄, k < λT < k̄ so that

n
(
l
(n)
T − λT

)
I(k ≤ l

(n)
T ≤ k̄) is uniformly integrable, where l

(n)
T = (X∗(n), X∗(n))T

(I2) For the same k, k̄,

P(k ≤ (X∗(n), X∗(n))T ≤ k̄) = 1− o(1/n)



5. Hedging

The market is complete when we add a market traded derivative security.
We can hedge an option by trading the stock, the bond and another option.
Let F2(x, t), F3(x, t) be the prices of two options at time t when price of stock is cx.
Let F1(x, t) = cx be the price of the stock and F0(x, t)B0 exp{−

∫ t

0
ρsds} be price of the

bond.
Assume Fi are continuous in both arguments.
We shall construct a self financing risk-less portfolio

V (t) =
3∑

i=0

φ(i)(t)Fi(x, t)

Let u(i)(t) = φ(i)(t)Fi(x,t)
V (t)

be the proportion of wealth invested in asset i.
∑

u(i) = 1
Since Vt is self financing,

dV (t)

V (t)
=

3∑
i=0

u(i)(t)
dF (x, t)

F (x, t)

= u(0)(t)ρtdt + u(1)(t)
1

cx
(dN1t − dN2t)

+
3∑

i=2

u(i)(t)(αFi
(x, t)dt + βFi

(x, t)dN1t + γFi
(x, t)dN2t)



Vt is risk-less =⇒
u(1)(t) 1

cx
+

∑3
i=2 u(i)(t)βFi

(x, t) = 0,

−u(1)(t) 1
cx

+
∑3

i=2 u(i)(t)γFi
(x, t) = 0

No arbitrage =⇒ u(0)(t)ρtdt +
∑3

i=2 u(i)(t)αFi
(x, t) = ρt

The hedge ratios are:

u(2) = [(1− αF2

ρ
− xβF2)(1−

γF2 + βF2

γF3 + βF3

)]−1

u(3) = [(1− αF3

ρ
− xβF3)(1−

γF3 + βF3

γF2 + βF2

)]−1

u(0) = − 1

ρt

(u(2)αF2 + u(3)αF3)

u(1) = −x(u(2)βF2 + u(3)βF3)



6. Stochastic Intensity

Now we consider the case where the unobserved intensity λt is a stochastic process.
We first assume a two state Markov model for λt as in Naik(1993)
Later we describe how we can have similar results for other models on λt eg. Hull and
White(1987)
Suppose there is an unobserved state process θt which takes 2 values , say 0 and 1.
The transition matrix is Q.
When θt = i, λt = λi.
Counting process associated with θt is ζt.

Let us denote by {Gt} the complete filtration σ(Su, λu, 0 ≤ u ≤ t) and by P the proba-
bility measure on {Gt} associated with the process (St, λt).

We get two different values of the expected price under the two values of θ(0).
The θ process is unobserved.
We cannot invert an option to get θ(0) because it takes two discrete values.
Need to introduce πi(t) = P (θt = i | Ft) where Ft = σ(Su, 0 ≤ u ≤ t)
As shown in Snyder(1973), under any P̂ ∈ P the πit process evolves as:
dπ1t = a(t)dt + b(t, 1)dN1t + b(t, 2)dN2t where a(t) and b(t, i) are Ft adapted processes.



7. Bayesian Framework

As shown in Yashin(1970) and Elliott et. al.(1995), the posterior of θj(t) is given by:

πj(t) = πj(0) +
∫ t

0

∑
i

qijπi(u)du

+
∫ t

0

πj(u)(λ̄(u)− λj)N2
udu

+
∑

0<u<t

bj(u)

where λ̄(t) =
∑

i πi(t)λi and bj(u) = πj(u−)
(

λjpλj
(Su−→Su)∑

i πi(u)λipλi
(Su−→Su) − 1

)
Thus, aj(u) =

∑
i qijπi(u) +

∫ t

0
πj(u)(λ̄(u)− λj)N2

u

Now we can hedge as in the constant intensity case with modified hedge ratios. For
hedging with stochastic intensity, same results as in the fixed λ case holds with α, β, γ
replaced by α̃, β̃, γ̃

α̃ = π0
∂F0

∂t
+ π1

∂F1

∂t

β̃ = π0βF0F0 + π1βF1F1

γ̃ = π0γF0F0 + π1γF1F1

In this setting we need one option and the stock to hedge an option and do not need to
invert at all time points as would be case if we did not use the posterior.



8. Description of data

• The data was obtained from the optionmetrics database on 3 stocks: Ford (Dec
2002), IBM (June 2002) and ABMD(Feb 2003). The stock data is transaction by
transaction. The option data is daily best bid and ask prices for all options traded
on that day.

• The data is filtered for after hour and international market trading. The data now
is on tradings in NASDAQ regular hours.

• The tick size is 1/16 for Ford and 1/100 for IBM and ABMD.

• We shall use the data for the first day of the month as training sample and for the
rest of the days as test sample. Estimating risk-neutral parameters by inverting
option prices in training sample.



Figure 1: Error in CALL price for training sample of IBM data



Figure 2: Error in CALL price for test sample of IBM data



Figure 3: Hedging error of birth and death and the Black Scholes model, both with
constant intensity rate.



9. Stochastic Intensity rate

• To estimate 5 parameters: λ0, λ1, q01, q10, and π.

• The objective is to find the parameter set that minimizes the root mean square
error between the bid-ask-midpoint and the daily average of the predicted option
price, for all options in the training sample.

• We followed a diagonally scaled steepest descent algorithm with central difference
approximation to the differential.

• The starting values of λ0, λ1 are taken to be equal to the value of the estimator λ̂
obtained in the constant intensity model.

• The starting values of q01, q10 are obtained by a hidden Markov model approach
using an iterative method (Ref Elliott 1995).

• We do a finite search on the parameter π.

• For the ABMD and Ford datasets, the RMSE of prediction obtained from the
constant intensity method is less than the bid-ask spread.

• For IBM data, q01 , q10 and π are 8.64e-02, 1.2126 and λ0 and λ1 are 1.042039e-06
and 8.326884e-08.



• The RMSE is 29.6799. Compare this to the birth death model with constant inten-
sity (RMSE=52.7729) or Black-Scholes model with constant volatility (RMSE=46.7688).

• This is an ill-posed problem.



10. Conclusions

• Both from Edgeworth expansions and real data examples, the pricing from this
model is very similar to Black-Scholes pricing.

• However hedging is very different. Here we need an extra derivative to hedge an
option.

• The introduction of Stochastic volatility does not necessitate the introduction of
extra options for hedging purposes.

• Note that we are combining risk neutral estimation with updating by historical
data
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