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Capital Asset Pricing Model (CAPM)

Discrete-time approach

Excess return of asset R, — R is linear function of excess return of
market Rj; and Gaussian error term:

Ra—Rf = 5(RM—Rf)—|—E

Beta coefficient estimated by regressing asset returns on market

returns.



Difficulties with CAPM

Some difficulties with this approach, including:

1) Relationship between asset returns, market returns not always linear

2) Estimation of 8 from history, but future may be quite different

Ultimate goal of this research is to deal with both of these issues



Extending CAPM: Dynamic Beta

Two main approaches:

1) Retain linearity, but beta changes over time; Ferson (1989), Ferson
and Harvey (1991), Ferson and Harvey (1993), Ferson and Korajczyk
(1995), Jagannathan and Wang (1996)

2) Nonlinear model, by way of state-switching mechanism; Fridman
(1994), Akdeniz, L., Salih, A.A., and Caner (2003)

ASC introduces threshold CAPM model. Our approach is related.



Estimating Implied Beta

Different approach to estimating 3: look to options market

e Forward-Looking Betas, 2006
P Christoffersen, K Jacobs, and G Vainberg
Discrete-Time Model

e (Calibration of Stock Betas from Skews of Implied Volatilities, 2009
J-P Fouque, E Kollman
Continuous-Time Model, stochastic volatility environment



Example of Time-Dependent Beta

Stock  Industry Beta (2005-2006) Beta (2007-2008)
AA Aluminum 1.75 2.23
GE Conglomerate 0.30 1.00
JNJ Pharmaceuticals -0.30 0.62
JPM Banking 0.54 0.72
WMT  Retail 0.21 0.29

Larger 8 means greater sensitivity of stock returns relative to market
returns



Regime-Switching Model

We propose a model similar to CAPM, with a key difference:
When market falls below level ¢, slope increases by o, where 6 > 0
Thus, beta is two-valued

This simple approach keeps the mathematics tractable



Dynamics Under Physical Measure P

M, value of market at time t
S; value of asset at time t

M
th = pdt + o dW, Market Model; const vol, for now
t
d dM.
Sitt = B(My) Mtt + odZ; Asset Model

B(M) = B+ 011, <cy

Brownian motions W, Z; indep: d (W, Z), =0



Dynamics Under Physical Measure P

Substituting market equation into asset equation:

dSy

o = BOM)pudt + B(M)andW, + 0dZ,
t

Asset dynamics depend on market level, market volatility o,,

This is a geometric Brownian motion with volatility v/52(M;)o2, + o2

Note this is a stochastic volatility model



Dynamics Under Physical Measure P

Process preserves the definition of £3:

Cov (ds—%, d]\]\f:) Cov (ﬁ(Mt)th + odZ;, d]\]‘ftt)
Var (dWMtt) N Var (d]\]\ftt)
= oo (é(ME)dz{tj dj%t) Since BM's indep
ar M:
= B(My)
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Dynamics Under Risk-Neutral Measure P~

Market is complete (M and S both tradeable)

Thus, 3 unique Equivalent Martingale Measure IP* defined as

_ _ (1) _ gz _ = (1))2 (2))2
D ea:p{ /t 6 dW /t 0\ dZ, 2/t {(9 )=+ (0') }ds}

with
oy — KT

5(2) r(B(M¢) — 1)
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Dynamics Under Risk-Neutral Measure P~

where

AW}
d7;

By Girsanov's Thm, W}

rdt + opmdW;

rdt + B(My)omdW, + odZ;

h—r
r(B(M;) — 1)

o

, Z; are indep Brownian motions under IP*.
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Option Pricing

P price of option with expiry T, payoff h(ST)
Option price at time t < T is function of t, M, and S
(M ,S) Markovian

Option price discounted expected payoff under risk-neutral measure P*

P(t, M, S) = [E* {e—r<T—t>h(sT)\Mt — M, S, = s}
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State Variables

Define new state variables: X; = log S;, & = log M;
Initial conditions Xg =z, & =&

Dynamics are:

02
dé, = (7« — Tm) dt + o dW
1
dX, = (fr - 5(52(6&)0; + 02)> dt + B(e*) o dW} + odZ}
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State Variables

WLOG, let t =0

In integral form,

2

§e =6+ <r—07m>t+ath*

Next, consider X at expiry (integrate from 0 to T):
52 -2 (T
Xr = x4+ (r—— T——m/ B2 (e5t)dt
2 2/,

T
-+ O'm/ B(es)dW ) + o Zx
0
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Working with X

M, <c = et<c = &<loge

B(M) =B+ 61ar<ey = Be’) =B+ 81, <loge)

Using this definition for 5(e%t), X7 becomes

2 .2 2
Xr = x4 ('r— b Jm;" )T+amﬁw;+az;
) 0_2 T T
- 20 [ Tecnadt+ond [ TeanadV
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Occupation Time of Brownian Motion

Expression for X1 involves integral fOT Ite, <log ey dt
This is occupation time of Brownian motion with drift

To simplify calculation, apply Girsanov to remove drift from &
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Occupation Time of Brownian Motion

Consider new probability measure IP defined as

dIP
dIP*

1
= exp {—HW} — 592T}

2
0 — L(T_U_m>
Tm 2

Under this measure, &; is a martingale with dynamics

&, = opdW,
— 1 2
AW, = dW; + — (7“ - "—m) dt
Om 2
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Changing Measure: P* — P
Since W* and Z* indep, Z* not affected by change of measure
Can replace Z* with Z

Under IP,

Xr = 24+ A4T + omfWr
T
+ o4t — AZ/ I[{515<logc}dt
0
T ——
+ 0m5/ H{§t<log c}th
0

where constants A;, A, defined as

Al 0%(62_6)—'_0-2

|

=
~—~
 —

|
@
~—

|

Ay = 5(5+25—1)%”+5r



First Passage Time

Now that &; is driftless, easier to work with occupation time
Run process until first time it hits level log c
Denote this first passage time

T:inf{tZO:ftzlogc}:inf{tZO:Wt:6}

where

loge — &

Om

C =

Density of first passage time of & = £ to level log c is

|~ ~2
O e 0
p(“’? C) T mexp 2U ) u >
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Including First Passage Time Information

First passage time 7 may happen after T', so need to be careful
Can partition time horizon into two pieces:

0, 7AT] and [TAT,T]

If & <loge, 7 AT counts as occupation time
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Including First Passage Time Information

Incorporating this information into X yields

Xt = x—l—AlT—kamﬁ/WTnLaET
T
_AQ (7' A T) ]I{5>0} — AQ / H{Wt<5}dt
TNT

T
_|_O-'m(S WonT H{6>O} + O-m(s/

T

T~ dW
o Ty O
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Working with the Stochastic Integral

Stochastic integral can be re-expressed in terms of local time L¢of W

at level c.

Applying Tanaka's formula to ¢(w) = (w — ¢)l;, <5 between 7 AT
and T', we get:

~

T
/ Lew, <) dWe = ¢(Wr) = ¢(Wrnr) + Ly — Loar -

AT
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Starting Level of Market: Three Cases

Consider separately the three cases & = logc, £ > logc, and & < logc
(or equivalently ¢ =0, ¢ <0, ¢ > 0)

Notation for terminal log-stock price, given &

Case £ = logc terminal log-stock price ¥
Case £ > logc terminal log-stock price U™
Case £ < logc terminal log-stock price ™
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Consider Case £ < logc as Example

In this case, ¢ > 0 and we have

Xt = :13—|—A1T—|—0mﬁ/I/I7T—|—JZT
T
_AQ(T/\T) —AQ/ H{W <5}dt—|—0'm5W7-/\T
TNT ‘

—|—O'm5 {(WT — 5) H{/VIV/T<E} — (W’T/\T T 6) H{/V[V/T/\T<5} + L% o Li/\T

Treat separately cases {7 < T} and {7 > T}
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Case ¢ < logc, contd.

e On {7 > T}, we have:

Xp = a4 (A —A)T+0,(8+08) Wyp+0Zrp
= U, (Wr, Zr),

where lower index T'+ stands for 7 > T

Distribution of X7 is given by distn of independent Gaussian r.v. Zr,
and conditional distn of W given {17 > T'}.
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Case £ < logc, contd.

Conditional distn of Wr given {r>T}

From Karatzas and Shreve, one easily obtains:

—~ 1 2
]P{WTEda,T>T} = (e_ﬁ—e_

27

a < c,



Case & < logc, contd.

e On {r = u} with u < T, we have W, = ¢, and

—~—

Xr = 2+ (A1 — A)T + 0 (B + 0)é + 0B(Wr — Wy,) + 0 27

T
+4 /u Lew,—w, >0} 4t

+omd | (Wr = Wa) L, _w, <oy + L5 = LG

Distn of X1 given by distn of Zr and indep triplet
(BT_U? L%—Uﬂ F%—u)

Triplet comprised of value, local time at 0, and occupation time of
positive half-space, at time T — u, of standard Brownian motion B.
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Case ¢ < log c, contd.

In distribution:

Xr = x4+ (A — AT +0,(B+08)é+0mBr_u (B+06p, ,coy) + 027
+ATH_ + 0, 0Ly,
= U_ (Bp_y, Ly_,., 05 . Z7).

Distn of triplet (Br_,L%_,,I'; ) developed in paper by Karatzas
and Shreve.
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Karatzas-Shreve Triplet (1984)

]P{W/T e da, LY. € db, T} € d’y}

2p(T — ~v;b) p(v;a + b) if a>0,0>00<~y<T,
2p(v;0) p(T' —v;—a+b) if a<0,b>0,0<y<T,

where p(u;-) is first passage time density
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Back to Option Pricing Formula

Given final expression for X, option price at time ¢t =0 is

Py

IE* {6_rTh(ST>}

~ dIP*

E{e_TTh(eXT)—N }
dIP

E {e_TTh(eXT)GHWT_%OQT}

T _lg2T = %
o—T o~ 30 T]E{h(eXT)eQWT}
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Option Pricing Formula, contd.

Decompose expectation on {7 < T} and {7 > T},
Denote by nr(z) the A'(0,T) density,

Define the following convolution relation involving the K-S triplet:

T—r
/ g(a,b,v;T — w)p(u; ¢)du
0

2p(v;a+b)p(T —v;0+1¢)) if a>0
2p(v;b) p(T' —v; —a+b+|¢|]) if a<O
=: G(a,b,7;T)
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Option Pricing Formula, contd.

The option pricing formula becomes

o0 T o0 o0
12 ~ +
PO _ 6—(7“—|—§9 )T leec/ / / / h(e\IJT_ (a,b,’y,z))eea
—o0 J0 0 — 00

xG(a,b,v;T)dadbdynry(z)dz
+ (/ / h(e\pér:L (a”z))e@“qu(a; ¢)da nT(z)dz>]
—0o J DE

(—o0,¢) if ¢>0

where

D* =
(¢,00) if €<0
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Note About Market Stochastic Volatility (SV)

e Assumption of constant market volatility o,,, not realistic
e Let market volatility be driven by fast mean-reverting factor
e Introducing market SV in model has effect on asset price dynamics

e To leading order, these prices are given by risk-neutral dynamics

with o, replaced by adjusted effective volatility o* (see Fouque,
Kollman (2009) for details)

e One could derive a formula for first-order correction, but formula
is quite complicated and numerically involved
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Market Implied Volatilities

Following Fouque, Papanicolaou, Sircar (2000) and Fouque, Kollman
(2009), introduce Log-Moneyness to Maturity Ratio (LM M R)

log(K/x)
T

and for calibration purposes, we use affine LMMR formula

LMMR =

I ~b"+a“"LMMR

with intercept b* and slope a¢ to be fitted to skew of options data

Then estimate adjusted effective volatility as
b*2
* b* ae r —
o + ( 5 )
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Numerical Results and Calibration
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Asset Skews of Implied Volatilities

Using Stressed-Beta model, price European call option

Use following parameter settings:

C So r I’ Om o T
1000 | 100 | 0.01 | 1.0 | 030 | 0.01 | 1.0

K =70,71,...,150 to build implied volatility curves
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Implied Volatility (%)

Figure 1: Implied Volatility Skew vs. § (My = ¢)
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Figure 2: Implied Volatility Versus Starting Market (6 = 0.5)
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Calibration to Data: Amgen

e Consider Amgen call options with October 2009 expiry

e Strikes: Take options with LM M R between —1 and 1, using
closing mid-prices as of May 26, 2009

e For simplicity, asset-specific volatility o =0

e Market volatility 0* estimated from call option data on S&P 500
Index (closest expiry Sep09)

From affine LMMR, o* = 0.2549
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Implied Volatility (%)

Figure 3: Affine LM MR Fit to S&P 500 Index Options
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Calibration to Data: Amgen, contd.

e Need ¢, 3, and ¢

e Select params which min SSE between option model prices,

market prices

For context, closing level of S&P 500 Index as of May 26, 2009 was
910.33

Estimated parameters: ¢ = 925, B = 1.17, and § = 0.65.

So market is below threshold

42



Implied Volatility (%)
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