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Capital Asset Pricing Model (CAPM)

Discrete-time approach

Excess return of asset Ra −Rf is linear function of excess return of

market RM and Gaussian error term:

Ra −Rf = β(RM −Rf ) + ε

Beta coefficient estimated by regressing asset returns on market

returns.
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Difficulties with CAPM

Some difficulties with this approach, including:

1) Relationship between asset returns, market returns not always linear

2) Estimation of β from history, but future may be quite different

Ultimate goal of this research is to deal with both of these issues
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Extending CAPM: Dynamic Beta

Two main approaches:

1) Retain linearity, but beta changes over time; Ferson (1989), Ferson

and Harvey (1991), Ferson and Harvey (1993), Ferson and Korajczyk

(1995), Jagannathan and Wang (1996)

2) Nonlinear model, by way of state-switching mechanism; Fridman

(1994), Akdeniz, L., Salih, A.A., and Caner (2003)

ASC introduces threshold CAPM model. Our approach is related.
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Estimating Implied Beta

Different approach to estimating β: look to options market

• Forward-Looking Betas, 2006

P Christoffersen, K Jacobs, and G Vainberg

Discrete-Time Model

• Calibration of Stock Betas from Skews of Implied Volatilities, 2009

J-P Fouque, E Kollman

Continuous-Time Model, stochastic volatility environment
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Example of Time-Dependent Beta

Stock Industry Beta (2005-2006) Beta (2007-2008)

AA Aluminum 1.75 2.23

GE Conglomerate 0.30 1.00

JNJ Pharmaceuticals -0.30 0.62

JPM Banking 0.54 0.72

WMT Retail 0.21 0.29

Larger β means greater sensitivity of stock returns relative to market

returns
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Regime-Switching Model

We propose a model similar to CAPM, with a key difference:

When market falls below level c, slope increases by δ, where δ > 0

Thus, beta is two-valued

This simple approach keeps the mathematics tractable
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Dynamics Under Physical Measure IP

Mt value of market at time t

St value of asset at time t

dMt

Mt
= µdt+ σmdWt Market Model; const vol, for now

dSt
St

= β(Mt)
dMt

Mt
+ σdZt Asset Model

β(Mt) = β + δ I{Mt<c}

Brownian motions Wt, Zt indep: d 〈W,Z〉t = 0
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Dynamics Under Physical Measure IP

Substituting market equation into asset equation:

dSt
St

= β(Mt)µdt+ β(Mt)σmdWt + σdZt

Asset dynamics depend on market level, market volatility σm

This is a geometric Brownian motion with volatility
√
β2(Mt)σ2

m + σ2

Note this is a stochastic volatility model
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Dynamics Under Physical Measure IP

Process preserves the definition of β:

Cov
(
dSt
St
, dMt

Mt

)
V ar

(
dMt

Mt

) =
Cov

(
β(Mt)

dMt

Mt
+ σdZt,

dMt

Mt

)
V ar

(
dMt

Mt

)
=

Cov
(
β(Mt)

dMt

Mt
, dMt

Mt

)
V ar

(
dMt

Mt

) Since BM’s indep

= β(Mt)
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Dynamics Under Risk-Neutral Measure IP ?

Market is complete (M and S both tradeable)

Thus, ∃ unique Equivalent Martingale Measure IP ? defined as

dIP ?

dIP
= exp

{
−
∫ T

t

θ(1)dWs −
∫ T

t

θ(2)dZs −
1

2

∫ T

t

{
(θ(1))2 + (θ(2))2

}
ds

}

with

θ(1) =
µ− r
σm

θ(2) =
r(β(Mt)− 1)

σ
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Dynamics Under Risk-Neutral Measure IP ?

dMt

Mt
= rdt+ σmdW

∗
t

dSt
St

= rdt+ β(Mt)σmdW
∗
t + σdZ∗t

where

dW ∗t = dWt +
µ− r
σm

dt

dZ∗t = dZt +
r(β(Mt)− 1)

σ
dt

By Girsanov’s Thm, W ∗t , Z∗t are indep Brownian motions under IP ?.
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Option Pricing

P price of option with expiry T, payoff h(ST )

Option price at time t < T is function of t, M , and S

(M ,S) Markovian

Option price discounted expected payoff under risk-neutral measure P∗

P (t,M, S) = IE?
{
e−r(T−t)h(ST )|Mt = M,St = S

}
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State Variables

Define new state variables: Xt = logSt, ξt = logMt

Initial conditions X0 = x, ξ0 = ξ

Dynamics are:

dξt =

(
r − σ2

m

2

)
dt+ σmdW

∗
t

dXt =

(
r − 1

2
(β2(eξt)σ2

m + σ2)

)
dt+ β(eξt)σmdW

∗
t + σdZ∗t
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State Variables

WLOG, let t = 0

In integral form,

ξt = ξ +

(
r − σ2

m

2

)
t+ σmW

∗
t

Next, consider X at expiry (integrate from 0 to T ):

XT = x+

(
r − σ2

2

)
T − σ2

m

2

∫ T

0

β2(eξt)dt

+ σm

∫ T

0

β(eξt)dW ∗t + σZ∗T
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Working with XT

Mt < c ⇒ eξt < c ⇒ ξt < log c

β(Mt) = β + δ I{Mt<c} ⇒ β(eξt) = β + δ I{ξt<log c}

Using this definition for β(eξt), XT becomes

XT = x+

(
r − β2σ2

m + σ2

2

)
T + σmβW

∗
T + σZ∗T

− (δ2 + 2δβ)
σ2
m

2

∫ T

0

I{ξt<log c}dt+ σmδ

∫ T

0

I{ξt<log c}dW
∗
t
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Occupation Time of Brownian Motion

Expression for XT involves integral
∫ T

0
I{ξt<log c}dt

This is occupation time of Brownian motion with drift

To simplify calculation, apply Girsanov to remove drift from ξ
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Occupation Time of Brownian Motion

Consider new probability measure ĨP defined as

dĨP

dIP ?
= exp

{
−θW ∗T −

1

2
θ2T

}

θ =
1

σm

(
r − σ2

m

2

)
Under this measure, ξt is a martingale with dynamics

dξt = σmdW̃t

dW̃t = dW ∗t +
1

σm

(
r − σ2

m

2

)
dt
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Changing Measure: IP ? → ĨP

Since W ∗ and Z∗ indep, Z∗ not affected by change of measure

Can replace Z∗ with Z̃

Under ĨP ,

XT = x+A1T + σmβW̃T

+ σZ̃T −A2

∫ T

0

I{ξt<log c}dt

+ σmδ

∫ T

0

I{ξt<log c}dW̃t

where constants A1, A2 defined as

A1 = r(1− β)− σ2
m(β2 − β) + σ2

2

A2 = δ(δ + 2β − 1)
σ2
m

2
+ δr

19



First Passage Time

Now that ξt is driftless, easier to work with occupation time

Run process until first time it hits level log c

Denote this first passage time

τ = inf {t ≥ 0 : ξt = log c} = inf
{
t ≥ 0 : W̃t = c̃

}
where

c̃ =
log c− ξ
σm

Density of first passage time of ξt = ξ to level log c is

p(u; c̃) =
|c̃|√
2πu3

exp

(
− c̃

2

2u

)
, u > 0
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Including First Passage Time Information

First passage time τ may happen after T , so need to be careful

Can partition time horizon into two pieces:

[0, τ ∧ T ] and [τ ∧ T, T ]

If ξt < log c, τ ∧ T counts as occupation time
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Including First Passage Time Information

Incorporating this information into XT yields

XT = x+A1T + σmβ W̃T + σZ̃T

−A2(τ ∧ T ) I{c̃>0} −A2

∫ T

τ∧T
I{W̃t<c̃}dt

+σmδ W̃τ∧T I{c̃>0} + σmδ

∫ T

τ∧T
I{W̃t<c̃}dW̃t
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Working with the Stochastic Integral

Stochastic integral can be re-expressed in terms of local time L̃c̃ of W̃

at level c̃.

Applying Tanaka’s formula to φ(w) = (w − c̃)I{w<c̃} between τ ∧ T
and T , we get:

∫ T

τ∧T
I{W̃t<c̃}dW̃t = φ(W̃T )− φ(W̃τ∧T ) + L̃c̃T − L̃c̃τ∧T .
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Starting Level of Market: Three Cases

Consider separately the three cases ξ = log c, ξ > log c, and ξ < log c

(or equivalently c̃ = 0, c̃ < 0, c̃ > 0)

Notation for terminal log-stock price, given ξ

Case ξ = log c terminal log-stock price Ψ0

Case ξ > log c terminal log-stock price Ψ+

Case ξ < log c terminal log-stock price Ψ−
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Consider Case ξ < log c as Example

In this case, c̃ > 0 and we have

XT = x+A1T + σmβ W̃T + σZ̃T

−A2(τ ∧ T )−A2

∫ T

τ∧T
I{W̃t<c̃}dt+ σmδW̃τ∧T

+σmδ
[(
W̃T − c̃

)
I{W̃T<c̃} −

(
W̃τ∧T − c̃

)
I{W̃τ∧T<c̃} + L̃c̃T − L̃c̃τ∧T

]
Treat separately cases {τ < T} and {τ > T}
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Case ξ < log c, contd.

• On {τ > T}, we have:

XT = x+ (A1 −A2)T + σm(β + δ) W̃T + σZ̃T

=: Ψ−T+(W̃T , Z̃T ),

where lower index T+ stands for τ > T

Distribution of XT is given by distn of independent Gaussian r.v. Z̃T ,

and conditional distn of W̃T given {τ > T}.
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Case ξ < log c, contd.

Conditional distn of W̃T given {τ > T}:

From Karatzas and Shreve, one easily obtains:

IP
{
W̃T ∈ da, τ > T

}
=

1√
2πT

(
e−

a2

2T − e−
(2c̃−a)2

2T

)
da, a < c̃,

=: qT (a; c̃) da
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Case ξ < log c, contd.

• On {τ = u} with u ≤ T , we have W̃u = c̃, and

XT = x+ (A1 −A2)T + σm(β + δ)c̃+ σmβ(W̃T − W̃u) + σZ̃T

+A2

∫ T

u

I{W̃t−W̃u>0}dt

+σmδ
[(
W̃T − W̃u

)
I{W̃T−W̃u<0} + L̃c̃T − L̃c̃u

]
Distn of XT given by distn of Z̃T and indep triplet(
BT−u, L

0
T−u,Γ

+
T−u

)
Triplet comprised of value, local time at 0, and occupation time of

positive half-space, at time T − u, of standard Brownian motion B.
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Case ξ < log c, contd.

In distribution:

XT = x+ (A1 −A2)T + σm(β + δ)c̃+ σmBT−u
(
β + δ I{BT−u<0}

)
+ σZ̃T

+A2 Γ+
T−u + σmδL

0
T−u

=: Ψ−T−(BT−u, L
0
T−u,Γ

+
T−u, Z̃T ).

Distn of triplet
(
BT−u, L

0
T−u,Γ

+
T−u

)
developed in paper by Karatzas

and Shreve.
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Karatzas-Shreve Triplet (1984)

IP
{
W̃T ∈ da, L̃0

T ∈ db, Γ̃+
T ∈ dγ

}
=

 2p(T − γ; b) p(γ; a+ b) if a > 0, b > 0, 0 < γ < T,

2p(γ; b) p(T − γ;−a+ b) if a < 0, b > 0, 0 < γ < T,

where p(u; ·) is first passage time density
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Back to Option Pricing Formula

Given final expression for XT , option price at time t = 0 is

P0 = IE?
{
e−rTh(ST )

}
= ĨE

{
e−rTh(eXT )

dIP ?

dĨP

}
= ĨE

{
e−rTh(eXT )eθW̃T− 1

2 θ
2T
}

= e−rT e−
1
2 θ

2T ĨE
{
h(eXT )eθW̃T

}
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Option Pricing Formula, contd.

Decompose expectation on {τ ≤ T} and {τ > T},

Denote by nT (z) the N (0, T ) density,

Define the following convolution relation involving the K-S triplet:

∫ T−γ

0

g(a, b, γ;T − u)p(u; c̃)du

=

 2p(γ; a+ b) p(T − γ; b+ |c̃|) if a > 0

2p(γ; b) p(T − γ;−a+ b+ |c̃|) if a < 0

=: G(a, b, γ;T )
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Option Pricing Formula, contd.

The option pricing formula becomes

P0 = e−(r+ 1
2 θ

2)T

[
eθc̃
∫ ∞
−∞

∫ T

0

∫ ∞
0

∫ ∞
−∞

h(eΨ±
T−

(a,b,γ,z))eθa

×G(a, b, γ;T ) da db dγ nT (z)dz

+

(∫ ∞
−∞

∫
D±

h(eΨ±
T+ (a,z))eθaqT (a; c̃)danT (z)dz

)]
where

D± =

 (−∞, c̃) if c̃ > 0

(c̃,∞) if c̃ < 0
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Note About Market Stochastic Volatility (SV)

• Assumption of constant market volatility σm not realistic

• Let market volatility be driven by fast mean-reverting factor

• Introducing market SV in model has effect on asset price dynamics

• To leading order, these prices are given by risk-neutral dynamics

with σm replaced by adjusted effective volatility σ∗ (see Fouque,

Kollman (2009) for details)

• One could derive a formula for first-order correction, but formula

is quite complicated and numerically involved
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Market Implied Volatilities

Following Fouque, Papanicolaou, Sircar (2000) and Fouque, Kollman

(2009), introduce Log-Moneyness to Maturity Ratio (LMMR)

LMMR =
log(K/x)

T

and for calibration purposes, we use affine LMMR formula

I ∼ b∗ + aε LMMR

with intercept b∗ and slope aε to be fitted to skew of options data

Then estimate adjusted effective volatility as

σ∗ ∼ b∗ + aε
(
r − b∗2

2

)
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Numerical Results and Calibration
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Asset Skews of Implied Volatilities

Using Stressed-Beta model, price European call option

Use following parameter settings:

c S0 r β σm σ T

1000 100 0.01 1.0 0.30 0.01 1.0

K = 70, 71, . . . , 150 to build implied volatility curves
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Figure 1: Implied Volatility Skew vs. δ (M0 = c)
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Figure 2: Implied Volatility Versus Starting Market (δ = 0.5)
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Calibration to Data: Amgen

• Consider Amgen call options with October 2009 expiry

• Strikes: Take options with LMMR between −1 and 1, using

closing mid-prices as of May 26, 2009

• For simplicity, asset-specific volatility σ = 0

• Market volatility σ∗ estimated from call option data on S&P 500

Index (closest expiry Sep09)

From affine LMMR, σ∗ = 0.2549
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Figure 3: Affine LMMR Fit to S&P 500 Index Options
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Calibration to Data: Amgen, contd.

• Need c, β, and δ

• Select params which min SSE between option model prices,

market prices

For context, closing level of S&P 500 Index as of May 26, 2009 was

910.33

Estimated parameters: ĉ = 925, β̂ = 1.17, and δ̂ = 0.65.

So market is below threshold
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Figure 4: Volatility Skews for Amgen Call Options
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THANK YOU!
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