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Impulse Control Problems – Brief Introduction

Ï No transaction cost / only proportional cost → optimal
strategy with infinite variation.

Ï In contrast, assuming fixed cost + proportional cost,
strategies with infinitely many transactions within
finite time will not be optimal.

Ï Fixed Cost → Key characteristics of impulse controls.



Related Work
Ï Quasi-Variational Inequalities: Caffarelli –

Friedman(’78, ’79), Bensoussan – Lions (’82);
Ï Cash management: Constantinides – Richard (’78);
Ï Inventory controls: Harrison – Taylor (’78), Harrison –

Sellke – Taylor (’83);
Ï Portfolio management with transaction cost: Davis –

Norman (’90), Korn (’98, ’99), Øksendal – Sulem (’02);
Ï Exchange rates: Jeanblanc-Piqué (’93), Cadenillas –

Zapatero (’99).
Ï Insurance models: Cadenillas et al. (’06);
Ï Liquidity risk: Ly Vath et al. (’07);
Ï Irreversible investment: Scheinkman – Zariphopoulou

(’01).
Ï American Options for Jump Diffusions: Bayraktar,

Bayraktar – Xing.
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Motivating Example

This example is taken from Constantinides – Richard (’78).
Consider the following cash management problem.

Ï Cash balance on a bank account: Xt = x+µt+σWt (due
to a random cash demand).

Ï Holding cost: hXt if Xt > 0. (e.g., opportunity cost).
Ï Penalty cost: −pXt if Xt < 0.
Ï The controller decides

(1) the times (τ1,τ2, . . .) and (2) the sizes (ξ1,ξ2, . . .)
to adjust the cash balance.

Ï At τi , the cash level is adjusted from Xτ−i to Xτ−i +ξi,
incurring a fixed transaction cost K+ (or K−) and a
proportional cost k+ξi (or −k−ξi).



Motivating Example
The goal is to minimize the cost

Jx := E
(∫ ∞

0
e−rtf (Xt)dt+

∞∑
i=1

e−rτiB(ξi)

)
,

where

f (x)=
{

hx, if x≥ 0
−px, if x≤ 0,

B(ξ)=
{

K++k+ξ, if ξ> 0
K−−k−ξ, if ξ< 0.

f (x) B(ξ)

ξx0 0

K+

K−

Slope −p Slope h Slope −k−
Slope k+

> 0



Motivating Example

Questions:
1. Can we find a closed-form solution for the value

function
u(x) := inf

{τi,ξi}
Jx ?

2. Can we find optimal strategies?



Motivating Example – Value Function
Closed-form solution can be obtained by solving the HJB
equation and assuming the “smooth-fit” principle.

y

x

−k+
k−

qq sSQ

K−K+

In C = (q,s),

−σ
2

2
u′′−µu′+ru= f (x).

And

u′(q)= u′(Q)=−k+

u′(s)= u′(S)= k−

u(q)= u(Q)+K++k+(Q−q)
u(s)= u(S)+K−−k−(S−s).
→ q,Q,s,S.



Motivating Example – Optimal Strategy

Q Sq s
x

Continuation Region C

Action Region AAction Region A

The optimal strategy:
1. If Xt ∈C = (q,s): No action;
2. Xt reaches q (or initial x≤ q): raise it to Q immediately;
3. Xt reaches s (or initial x≥ s): lower it to S immediately.

It is usually called the “(S,s) policy".
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Why “Smooth Fit Principle”?

1. Getting closed-form solutions relies heavily on the
“smooth fit principle”.

2. High dimensional problems: “smooth fit” is also
important for designing numerical schemes.

3. “Correctness” of the solution is dubious without
regularity studies.

4. There are control problems in which “smooth-fit” fail
(Guo – Tomecek[3]).
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The Model

Ï Probability space: (Ω,F ,P), with a Brownian motion
W.

Ï Poisson random measure N(·, ·) on R+×Rl.
Ï W and N are independent.
Ï Lévy measure ν(·) := E(N(1, ·)).
Ï Compensated Poisson measure

Ñ(dt,dz) :=N(dt,dz)−ν(dz)dt.

Ï Filtration {Ft} generated by W and N.



The Model

Ï In the absence of control, the state process Xt ∈Rn

follows

dXt =µ(Xt−)dt+σ(Xt−)dW+
∫
Rl

j(Xt− ,z)Ñ(dt,dz). (1)

Ï Admissible impulse control V = (τ1,ξ1;τ2,ξ2; . . .):
Ï Ft-stopping times {τi}i satisfying{

0< τ1 < τ2 < ·· · < τi < . . . ,
τi→∞ as i→∞,

Ï Fτi-measurable r.v.’s {ξi}i, Rn-valued.



The Model
When V = (τ1,ξ1;τ2,ξ2; . . .) is adopted, Xt is governed by

dXt =µ(Xt−)dt+σ(Xt−)dWt +
∫
Rl

j(Xt− ,z)Ñ(dt,dz)+∑
i
δ(t−τi)ξi

(2)

τ1

τ2

τ3

ξ1

ξ2

ξ3

Xt

t0



The Model

Ï Goal: To minimize over all admissible controls

Jx[V] := Ex

(∫ ∞

0
e−rtf (Xt)dt+

∞∑
i=1

e−rτiB(ξi)

)
.

Ï Value function:
u(x) := inf

V
Jx[V]. (3)



Standing Assumptions

1. µ :Rn →Rn,σ :Rn →Rn ×Rn, f :Rn →R are Lipschitz.
f ≥ 0.

2. The transaction cost B :Rn →R satisfies
Ï B ∈C(Rn\{0}) and lim

|ξ|→∞
|B(ξ)| =∞.

Ï It costs at least K > 0 to make a transaction:

inf
ξ∈Rn

B(ξ)=: K > 0.

Ï It is never optimal to make two transactions
simultaneously:

B(ξ1)+B(ξ2)≥B(ξ1 +ξ2)+K, ∀ξ1,ξ2 ∈Rn.

3. The discount factor r> 0 sufficiently large.



Our Approach and Tools

Ï Viscosity solutions
Ï PDE tools for regularity:

Ï Sobolev imbedding:

W2,p(O )⊂C1,α(O ),α= 1−n/p.

Ï Elliptic PDE: −aijuxixj +biuxi +cu= f in O ; u= g on ∂O :
Ï Schauder’s estimates: Cα data ⇒ u ∈C2,α.
Ï Calderon-Zygmund estimates: nice coeff. and

f ∈Lp ⇒ u ∈W2,p.



No Jump Case

To clearly illustrate our methods, let’s remove the jump
part in the dynamics temporarily.

dXt =µ(Xt−)dt+σ(Xt−)dWt+
∫
Rl

j(Xt− ,z)Ñ(dt,dz)

↓
dXt =µ(Xt)dt+σ(Xt)dWt

Later we will bring this term back.



Hamilton-Jacobi-Bellman Equation

The value function u should “solve” the HJB equation

max{Lu− f ,u−Mu}= 0 in Rn, (HJB)

where

Lu(x)=−aij(x)uxixj(x)−µi(x)uxi(x)+ru(x), (4)

Mu(x)= inf
ξ∈Rn

(u(x+ξ)+B(ξ)), (5)

and the matrix A= (
aij

)
n×n = 1

2σ(x)σ(x)T.



Heuristic Derivation of HJB Equation

At time t= 0, we have two choices:
1. No intervention is optimal: DPP ⇒ Lu= f . Otherwise

Lu≤ f .
2. Intervention by an impulse of size ξ∗ is optimal:

u(x)= u(x+ξ∗)+B(ξ∗) u(x)= inf
ξ∈Rn

{u(x+ξ)+B(ξ)}=Mu(x).

Otherwise u≤Mu.
3. At least one of the equalities holds

⇒max{Lu− f ,u−Mu}= 0.



Preliminary Results

1. The value function u is Lipschitz continuous.
2. The operator M defined by

Mu(x)= inf
ξ∈Rn

(u(x+ξ)+B(ξ))

is increasing, concave and preserves Lipschitz
continuity and uniform continuity.
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Viscosity Solutions: F(∇2u,∇u,u,x)= 0 in O
F(M,p,r,x)≤F(N,p,s,x) if M ≥N (matrices ordering) and
r≤ s.

Definition
An upper semi-continuous function u is a viscosity
subsolution of F = 0 in O provided that for every ϕ ∈C2(Rn),
if u−ϕ has a local maximum at x0 ∈O and u(x0)=ϕ(x0),
then

F(∇2ϕ(x0),∇ϕ(x0),ϕ(x0),x0)≤ 0.

Supersolutions are defined similarly.

u(x)
ϕ(x)

Rn

R

x0



Viscosity Solutions:
max{Lu− f ,u−Mu}= 0 in Rn

There are (at least) two equivalent definitions:
1. u ∈UC(Rn) is called a viscosity subsolution of (HJB)

provided that for any ϕ ∈C2(Rn), if u−ϕ has a global
maximum at x0 and u(x0)=ϕ(x0), then

max{Lϕ(x0)− f (x0),ϕ(x0)−Mϕ(x0)}≤ 0.

2. u ∈UC(Rn) is called a viscosity subsolution of (HJB)
provided that for any ϕ ∈C2(Rn), if u−ϕ has a local
maximum at x0 and u(x0)=ϕ(x0), then

max{Lϕ(x0)− f (x0),u(x0)−Mu(x0)}≤ 0.

The same holds true for supersolutions.



Viscosity Solution Property

The following result is known (Øksendal – Sulem (’04)).

Theorem
The value function u is a viscosity solution of the HJB
equation

max{Lu− f ,u−Mu}= 0 in Rn.



Relation with Optimal Stopping Problem

Ï Optimal stopping problem:

v(x) := inf
τ
E

(∫ τ

0
e−rtf (Xt)dt+e−rτg(Xτ)

)
, (6)

subject to dXt =µ(Xt)dt+σ(Xt)dW, X(0)= x.
Ï v is the unique uniform continuous viscosity solution of

max{Lv− f ,v−g}= 0 in Rn.

Uniqueness is established by extending the
comparison principle from bounded domains to Rn.



Relation with Optimal Stopping Problem

Ï Given w ∈UC(Rn), define (Bensoussan – Lions):

T w(x) := inf
τ
E

(∫ τ

0
e−rtf (Xt)dt+e−rτMw(Xτ)

)
, (7)

subject to dXt =µ(Xt)dt+σ(Xt)dW, X(0)= x.
Ï T w is the unique viscosity solution of

max{L(T w)− f ,T w−Mw}= 0 in Rn.

Ï If w is a solution of max{Lw−f ,w−Mw}= 0 in Rn, then

T w=w.



Unique Viscosity Solution

Theorem
Assume that there are constants C,Λ> 0 such that{

|µ(x)| ≤C ∀x ∈Rn,
aij(x)ηiηj ≤Λ|η|2 ∀x,η ∈Rn.

(8)

Then the HJB equation has at most one solution in
BUC(Rn).



Uniqueness – Sketch Proof

Ï Suppose w,v ∈BUC(Rn) are two solutions of (HJB).
WLOG, assume w,v≥ 0. Then

T w=w,T v= v.

Ï The operator T is increasing and concave.
Ï The above two properties imply

w−v≤ γw for some γ≥ 0⇒w−v≤ δγw for some δ< 1.

Ï Starting with γ= 1, iteration gives w−v≤ δnγw,∀n.
Hence w−v≤ 0.

Ï Interchanging w and v, we get w= v.
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Smooth Fit Principle

Theorem (Regularity of Value Function)
Assume that σ ∈C1,1 locally in Rn, and for some λ> 0,

aij(x)ηiηj ≥λ|η|2, ∀x,η ∈Rn. (Uniform Ellipticity)

Then for any bounded open set O ⊂Rn with smooth
boundary,

u ∈W2,p(O ) ∀1≤ p<∞.

By Sobolev imbedding, u ∈C1(Rn) and ∇u is in Hölder
space Cα for any α< 1.
Let us fix an arbitrary bounded open O with smooth
boundary.



Continuation / Action Region / Free Boundary

We define the continuation region

C := {x ∈Rn : u(x)<Mu(x)}, (9)

the action region

A := {x ∈Rn : u(x)=Mu(x)}, (10)

and the free boundary

Γ := ∂A . (11)

Recall that u and Mu are both continuous, so C is open
and A is closed.



C2,α Regularity in C

Lemma (C2,α-Regularity in C )
The value function u ∈C2,α(D), for any α ∈ (0,1) and any
compact set D⊂C , and it is a classical solution of

Lu(x)− f (x)= 0, x ∈C . (12)

This lemma is established using Schauder’s estimates.
Ï max{Lu− f ,u−Mu}= 0=⇒Lu= f in C = {u<Mu}.
Ï f ∈Cα(D)=⇒ u ∈C2,α(D).



Regularity Across Free Boundary – Approach

To obtain regularity of u across the free boundary Γ, we
consider again the related optimal stopping problem. In
terms of the HJB equations:

Impulse: max{Lu− f ,u−Mu}= 0 in Rn. (13)
Stopping: max{Lv− f ,v−g}= 0 in Rn. (14)

What condition should we impose on g to have a “nice”
solution v?



Regularity for max{Lv− f ,v−g}= 0

Lemma
L, f as before. Assume that g ∈C(Rn) and that ∃{gε}ε>0 in
C2(O ) converging uniformly to g in O such that

Lgε ≥−M in O for some M. (15)

If v is a continuous viscosity solution of

max{Lv− f ,v−g}= 0 in Rn, (16)

Then v ∈W2,p(O ) for any 1≤ p<∞.



Remarks on the Lemma

Suppose v,g ∈C2(O ) and v solves max{Lv− f ,v−g}= 0.
Ï Lv≤ f ≤C in O .
Ï If Lv< f at some point x0 ∈O , v−g attains maximum

there. By maximum principle, Lv≥Lg≥−M.
Otherwise, Lv= f ≥−C.

Ï We always have Lv ∈L∞(O ).
Ï By Calderon-Zygmund estimates, v ∈W2,p(O ).

Observe that in this argument, Lg≥−M is essential.
Unfortunately, we wish to let g=Mu which is not
necessary C2. Hence we approximate g using C2 functions
gε with Lgε ≥−M.



Proof of Theorem – (1)
To prove the theorem, we apply the above lemma with

g=Mu= inf
ξ∈Rn

(u(·+ξ)+B(ξ)) (Lipschitz)

gε = g∗ϕε ∈C∞,

where ϕε(x)= 1
εnϕ

( |x|
ε

)
, ϕ ∈C∞(R) with compact support,

ϕ≥ 0, and
∫
ϕ= 1.

Then gε→ g uniformly on O and |∇gε| ≤C. The key is to
show that

Lgε =−aijgεxixj
−µigεxi

+rgε ≥−M in O ,

and it suffices to prove

aijgεxixj
≤C in O .



Proof of Theorem – (2)

To estimate ∇2gε, consider the second-order difference
quotients in the direction e ∈Rn (|e| = 1) at x ∈O ,

Dh
eeg

ε(x) := 1
h2

[
gε(x+he)+gε(x−he)−2gε(x)

]= (
Dh

eeg
)
∗ϕε.

Thus, we seek an upper bound of Dh
eeg(x) first.



Proof of Theorem – Figure

O

C

A

ξ∗

y

x

Γ

B

D

u(y)−Mu(y)≤−K

y= x+ξ∗ ∈D

D :=
{
y ∈B : u(y)≤Mu(y)− K

2

}
Dh

eeg(x)≤Dh
eeu(y)

Rn

x ∈O

Figure: Proof of Regularity Theorem



Proof of Theorem – (3)

Fix any x ∈O and take a minimizing sequence {ξk} such
that u(x+ξk)+B(ξk)→Mu(x)= g(x). Then {ξk} is bounded.
WLOG, ξk → ξ∗. Since B(ξ)+B(ξ′)≥K +B(ξ+ξ′),

Mu(x)= inf
η∈Rn

{u(x+ξk +η)+B(ξk +η)}

≤ inf
η∈Rn

{u(x+ξk +η)+B(η)}+B(ξk)−K

=Mu(x+ξk)+B(ξk)−K
=Mu(x+ξk)−u(x+ξk)+ [u(x+ξk)+B(ξk)]−K.

Passing to the limit k→∞, we obtain

u(x+ξ∗)−Mu(x+ξ∗)≤−K.



Proof of Theorem – (4)

We can take an open ball B ⊃O such that

x ∈O ,u(x+ξ)+B(ξ)≤Mu(x)+1=⇒ x+ξ ∈B,

since B(ξ)→∞ as |ξ|→∞ and u≥ 0.
Recall K = infB> 0. Define

D :=
{

y ∈B : u(y)≤Mu(y)− K
2

}
. (17)

Then D⊂C and hence u ∈C2,α(D).
Hence y := x+ξ∗ is an interior point of D.



Proof of Theorem – (5)
Since Mu(x±he)≤ u(x±he+ξk)+B(ξk) for all k,

Mu(x+he)+Mu(x−he)−2Mu(x)
≤u(x+he+ξk)+u(x−he+ξk)+2B(ξk)−2Mu(x)
→u(y+he)+u(y−he)−2u(y), k→∞,

=⇒ Dh
eeg(x)≤Dh

eeu(y) ≤CD := ‖u‖C2(D).

=⇒Dh
eeg

ε(x)=
∫

Dh
eeg(x−z)ϕε(z)dz≤CD.

Sending h→ 0,

eT (∇2gε
)
e≤CD in O .

=⇒aijgεxixj
= tr

[
σσT (∇2gε

)]= tr
[
σT (∇2gε

)
σ

]
≤C in O .
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Jump Diffusion Model

Let us bring back the jump term. The controlled process
obeys

dXt =µ(Xt−)dt+σ(Xt−)dWt +
∫
Rl

j(Xt− ,z)Ñ(dt,dz)+∑
i
δ(t−τi)ξi

In addition to the previous conditions, we assume:
1. |j(x,z)− j(y,z)| ≤ ρ(z)|x−y|,∀x,y ∈Rn with ρ(·) “nice”.
2. j(x, ·) ∈L1(Rl;ν),∀x ∈Rn.

Remark
The natural condition seems to be

∫
(1∧ j(x,z)2)ν(dz)<∞,

generalizing the property of ν:
∫

(1∧z2)ν(dz)<∞.
But in the case that j(x, ·) is not integrable, the HJB
equation is essentially different.



HJB Equation

Theorem
The value function u(·) is a viscosity solution of

max{L u− f ,u−Mu}= 0 in Rn. (HJB)

The only difference is the operator L which reads

L u=Lu− Iu,

Lu(x)=−aij(x)uxixj(x)−
(
µ(x)−

∫
Rl

j(x,z)ν(dz)
)
·∇u(x)+ru(x),

Iu(x)=
∫
Rl

[u(x+ j(x,z))−u(x)]ν(dz).



Preliminary Results

We have
1. u and Mu are Lipschitz.
2. Iu(x)= ∫

Rl [u(x+ j(x,z))−u(x)]ν(dz) is continuous.



Regularity for Jump Diffusion Model

Theorem
Assume that σ ∈C1,1 locally in Rn and for some λ> 0,

aij(x)ηiηj ≥λ|η|2, ∀x,η ∈Rn.

Then for any bounded open set O ⊂Rn and p<∞, we have

u ∈W2,p(O ).

As soon as we have the C2,α regularity in C , the rest of the
proof turns out to be the same as the no-jump case.



Key Lemma

Lemma (C2,α Regularity in C )
Assume that σ ∈C1(Rn), then for any compact set D⊂C and
α ∈ (0,1), we have u(·) ∈C2,α(D), and it is a classical solution
of

L u− f (x)= 0 in C .

Ï Difference from the no-jump case: The operator L has
an integral term. I.e., in C ,

L u= f =⇒Lu= f + Iu.

Ï Difficulty: Schauder’s estimates need f + Iu ∈Cα.
But we don’t know Iu is Lipschitz or even Hölder.



Sketch Proof of Key Lemma

The main technique is to “bootstrap”:
1. Iu is continuous, by Calderon-Zygmund estimates

Lu= f + Iu ∈Lp(D)⇒ u ∈W2,p(D).

2. By Sobolev imbedding, u ∈W2,p(D)⇒ u ∈C1,α(D).
3. u ∈C1,α(D) implies

Iu=
∫
Rl

[u(·+ j(·,z))−u(·)]ν(dz) ∈Cα(D).

4. Finally, by Schauder estimates,
Lu= f + Iu ∈Cα(D)⇒ u ∈C2,α(D).
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Thank you!
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