On λ -Quantile Dependent Convex Risk Measures

Lihong Xia, University of North Carolina at Charlotte Mingxin Xu, University of North Carolina at Charlotte

The Third Western Conference in Mathematical Finance Nov 13-15, 2009, Santa Barbara, California

Summary of this talk:

- Define the class of λ -quantile dependent convex measures of risk.
- \bullet Define the $\lambda\text{-quantile}$ dependent Fatou property.
- Give the robust representation of this class of risk measures.
- Example: the Weighted VaR.

- Measures of risk : capital requirements can be added to a financial position to make it acceptable.
- Axioms of convex measures of risk: for $X, Y \in \mathcal{X}$,
 - Monotonicity: If $X \leq Y$, then $\rho(X) \geq \rho(Y)$.
 - Cash invariance: If $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) m$.
 - Convexity: $\rho(\alpha X + (1 \alpha)Y) \le \alpha \rho(X) + (1 \alpha)\rho(Y), \ \alpha \in [0, 1].$ ρ is **coherent** if in addition:
 - Positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$, for all $\lambda \ge 0$ and $X \in \mathcal{X}$.

Robust Representation of Convex Measures of Risk:

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a given probability space. Consider a proper convex measure of risk $\rho : L^p \to \mathbb{R} \cup \infty, 1 \le p \le \infty$.

If ρ is lower semicontinuous, it is well-known that ρ has following robust representation:

$$\rho(X) = \sup_{\mathbf{Q} \in \mathcal{Q}} (\mathbb{E}_{\mathbf{Q}}[-X] - \rho^*(Q)),$$

with $\mathcal{Q} = \{\mathbf{Q} \text{ probability measures} : \mathbf{Q} \ll \mathbf{P}\}$ and $\rho^*(\mathbf{Q})$ the Fenchel-Legendre transformation of ρ .

If ρ is coherent, then $\rho(X) = \sup_{\mathbf{Q} \in \tilde{\mathcal{Q}}} \mathbb{E}_{\mathbf{Q}}[-X]$ for some set $\tilde{\mathcal{Q}} \subset \mathcal{Q}$.

Key point to the representation: the lower semicontinuity \Leftrightarrow Fatou property.

Literatures on Fatou property and robust representation of ρ :

• Delbaen (2000): Coherent real-valued ρ on L^{∞} .

The Fatou property: $(X_n) \subset L^{\infty}, |X_n| \leq C$, then

 $X_n \to X \in L^{\infty}$ **P**-a.s., implies $\rho(X) \leq \liminf_{n \to \infty} \rho(X_n)$.

- Föllmer and Schied (2004): Convex real-valued ρ on L^{∞} .
- Biagini and Frettelli (2009): Convex proper ρ on L^p , $1 \le p \le \infty$. Fatou property: $(X_n) \subset L^p$, $1 \le p \le \infty$, $|X_n| \le Y$ **P**-a.s., $Y \in L^p$, then $X_n \to X$ **P**-a.s. for some $X \in L^p$ implies $\rho(X) \le \liminf_{n \to \infty} \rho(X_n)$.
- Kaina and Rüschendorf (2009): robust representation of a convex proper ρ on L^p , $1 \le p \le \infty$.

Some concerns:

- The Fatou property is the key point ρ to be representable. However, the boundedness of the sequence X_n is in practice not easy to check.
- In practice, often only the loss of a financial position up to some fixed level is concerned.
- If a convex measure of risk depends only on the left tail of the random variables, would the Fatou property be weakened and easier to check?

Answer: Yes!

Examples:

• Value-at-Risk: $VaR_{\lambda}(X) := -q_X^+(\lambda) = q_{-X}^-(1-\lambda)$

Not a convex measure of risk.

- Conditional VaR: $CVaR_{\lambda}(X) := \frac{1}{\lambda} \int_0^{\lambda} VaR_{\gamma}(X) d\gamma = -\frac{1}{\lambda} \int_0^{\lambda} q_X^+(t) dt$ A coherent measure of risk.
- Weighted VaR: $\rho_{\mu}(X) := \int_{[0,1]} CV a R_{\gamma} \mu(d\gamma) = -\int_0^1 q_X(t) \phi(t) dt$ with μ a probability measure on [0,1] and $\phi(t) := \int_{(t,1]} \frac{1}{s} \mu(ds)$. A coherent measure of risk.

Definition 0.1 A convex measure of risk $\rho : L^p \to \mathbb{R} \cup \infty$ is λ -quantile dependent, if

$$X\mathbb{I}_{\{X\leq q^+_X(\lambda)\}}=Y\mathbb{I}_{\{Y\leq q^+_Y(\lambda)\}}\quad \mathbf{P}- \ a.s. \ \ implies \ \ \rho(X)=\rho(Y),$$

i.e., ρ depends on the the random variables only up to their λ -quantiles.

Reward: weaker Fatou property required for the representation.

Fatou property of a λ -quantile dependent risk measure:

Definition 0.2 (λ -quantile Fatou property)

For any sequence $(X_n) \subset L^p$ such that $q_{X_n}^+(\lambda) \leq c_{\lambda}$, for some $c_{\lambda} \in \mathbb{R}$ and all $n \in \mathbb{N}$,

 $X_n \to X \mathbf{P} - a.s. \text{ for some } X \in L^p \quad implies \quad \rho(X) \leq \liminf_{n \to \infty} \rho(X_n).$

Comparison:

Delbaen (2000): $|X_n| \leq C$,

Biagini and Frettelli (2009): $|X_n| \leq Y$.

So: $|X_n| \le C \Rightarrow |X_n| \le Y \Rightarrow q_{X_n}^+(\lambda) \le c_{\lambda}$.

If only the losses of the financial positions are considered, then 0 will be a natural upper bound of the quantiles. Robust representation of λ -quantile dependent convex measures of risk:

Theorem 0.3 Let $\rho : L^p \to \mathbb{R} \cup \infty$, $1 \le p \le \infty$, be a proper λ -quantile dependent convex measure of risk, then the following are equivalent:

1. ρ is $\sigma(L^p, (L^p)')$ -lower semicontinuous.

2.
$$\rho(X) = \sup_{\mathbf{Q} \in \mathcal{Q}_p} (\mathbb{E}_{\mathbf{Q}}[-X] - \rho^*(\mathbf{Q})),$$

with ρ^* the Fenchel-Legendre transformation of ρ and
 $\mathcal{Q}_p = \{\mathbf{Q} \text{ probability measures } : \mathbf{Q} \ll \mathbf{P}, \frac{d\mathbf{Q}}{d\mathbf{P}} \in (L^p)'\}.$

3. ρ is continuous from above.

4. ρ has the λ -quantile Fatou property.

Sketch of Proof:

- " $\mathbf{1} \Rightarrow \mathbf{2} \Rightarrow \mathbf{3}$ ": see Theorem 4.31 of Föllmer and Schied (2004) for L^{∞} case or Theorem 3.3 of Kaina and Rüschendorf (2009) for L^p case.
- " $3 \Rightarrow 4$ ": Continuous from above $\Rightarrow \rho$ has Fatou property (BF(2009)) $\Rightarrow \rho$ has λ -quantile dependent Fatou property.
- "4 \Rightarrow 1": Show that $C := \{\rho < c\}$ is weakly closed. Equivalently, show $C_r := C \cap \{X \in L^p : ||X||_p \le r\}$ is weakly closed for all r > 0. For $(X_n) \subset C_r$ s.t. $X_n \to X$ in L^p -norm, \exists subsequence X_{n_k} s.t. $X_{n_k} \to X$ P-a.s. $\Rightarrow q_{X_{n_k}}^+(\lambda)$ is uniformly bounded $\Rightarrow \rho(X) \le \liminf_{n \to \infty} \rho(X_n) \le c$, $\Rightarrow X \in C_r$ and C_r is strongly closed $\Rightarrow C_r$ is weakly closed.

An Example: The λ -quantile dependent Weighted VaR.

Definition 0.4 $\rho_{\mu,\lambda}: L^p \to \mathbb{R} \cup \infty, \ 1 \leq p \leq \infty, \ is \ defined \ as$

$$\rho_{\mu,\lambda}(X) = \int_{[0,\lambda]} CVaR_{\gamma}(X)\mu(d\gamma) = -\int_0^\lambda q_X(t)\phi(t)dt = \int_0^\lambda q_X(t)q_{\nu_\phi}(t)dt.$$

where μ is a probability measure on [0, 1] s.t. $\mu((\lambda, 1]) = 0$, and assume $\mu(\{0\}) = 0$.

And $-\phi(t) = \int_{(t,\lambda]} \frac{1}{s}\mu(s)$ is monotone increasing on $[0,\lambda]$, it can be viewed as a quantile function of a probability distribution measure ν_{ϕ} defined as $\nu_{\phi}([-\phi(0), -\phi(t)]) := t$, and $\nu_{\phi}(0) = 1 - \lambda$. Then $q_{\nu_{\phi}}(t) := -\phi(t), \forall t \in [0, \lambda]$. Notice that $\int_{0}^{\lambda} q_{\nu_{\phi}}(t) dt = -1$.

$\rho_{\mu,\lambda}$ is λ -quantile law invariant:

Definition 0.5 A convex risk measure $\rho : L^p \to \mathbb{R} \cup \infty$ is λ -quantile law invariant, if for any $X, Y \in L^p$,

 $X\mathbb{I}_{\{X\leq q^+_X(\lambda)\}} \ and \ Y\mathbb{I}_{\{Y\leq q^+_Y(\lambda)\}} \ have \ same \ distribution \ implies \ \rho(X)=\rho(Y).$

Recall the definition of λ -quantile dependent convex measure of risk: ρ is λ -quantile dependent, if for any $X, Y \in L^p$,

$$X\mathbb{I}_{\{X \le q_X^+(\lambda)\}} = Y\mathbb{I}_{\{Y \le q_Y^+(\lambda)\}} \quad \mathbf{P} - \text{ a.s. implies } \rho(X) = \rho(Y),$$

 λ -quantile uniform preference (second order stochastic dominance) of two probability distribution measures μ and ν : Definition 0.6 Let μ , ν be two probability distribution measures. μ is λ -quantile uniformly preferred over ν if for any " λ -quantile utility function" u defined as $u(x) = u_0(x)\mathbb{I}_{\{x \leq q_\nu(\lambda)\}} + u_0(q_\nu(\lambda))\mathbb{I}_{\{x > q_\nu(\lambda)\}}$ with u_0 a utility function, the following is true:

$$\int_0^\lambda u\,d\mu \ge \int_0^\lambda ud\nu$$

Proposition 0.7

$$\begin{split} \mu \succeq_{uni(\lambda)} \nu &\iff \int_0^t q_\mu(s) ds \ge \int_0^t q_\nu(s) ds, \, \forall t \in [0, \lambda] \\ &\iff \int_0^\lambda h(t) q_\mu(t) dt \ge \int_0^\lambda h(t) q_\nu(t) dt, \, \forall \ decreasing \ h : [0, \lambda] \to \mathbb{R}^+ \end{split}$$

Robust representation of $\rho_{\mu,\lambda}$:

Recall

$$\rho_{\mu,\lambda}(X) = \int_{[0,\lambda]} CVaR_{\gamma}(X)\mu(d\gamma) = -\int_0^{\lambda} q_X(t)\phi(t)dt = \int_0^{\lambda} q_X(t)q_{\nu_{\phi}}(t)dt.$$

Lemma 0.8 Define

$$\Phi := \left\{ \nu : \nu \text{ distribution measure such that } \nu \succeq_{uni(\lambda)} \nu_{\phi} \text{ and } \int_{0}^{\lambda} q_{\nu}(t) dt = -1 \right\}$$

Then for $X \in L^p$,

$$\rho_{\mu,\lambda}(X) = \max_{\nu \in \Phi} \int_0^\lambda q_X(t) q_\nu(t) dt.$$

The maximum is obtained by taking $\tilde{\nu} \in \Phi$ s.t. $q_{\tilde{\nu}} = q_{\nu_{\phi}}$.

Theorem 0.9 (Robust representation of $\rho_{\mu,\lambda}$)

For $X \in L^p$, $1 \le p \le \infty$,

$$\rho_{\mu,\lambda}(X) = \max_{\mathbf{Q}\in\mathcal{Q}} \mathbb{E}_{\mathbf{Q}}[-X],$$

with $\mathcal{Q} := \left\{ \mathbf{Q} \text{ probability measure }: \mathbf{Q} \ll \mathbf{P}, \nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}} \succeq \nu_{\phi} \text{ and } \int_{0}^{\lambda} q_{\nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}}}(t)dt = -1 \right\}.$ The maximum is obtained by choosing $\mathbf{Q}_{X} \in \mathcal{Q}$ such that $\frac{d\mathbf{Q}_{X}}{d\mathbf{P}} = f(X)$, where the decreasing function f is given by:

$$f(x) = \begin{cases} \phi(F_X(x)) & \text{if } x \text{ is a continuity point of } F_X, \\ \frac{1}{F_X(x) - F_X(x-)} \int_{F_X(x-)}^{F_X(x)} \phi(t) dt & \text{if } x \text{ is a discrete point of } F_X, \end{cases}$$

for $F_X(x) \leq \lambda$ and f(x) = 0, otherwise.

Example: $CVaR_{\lambda}$ for $\lambda \in (0, 1)$. Take $\mu(ds) = \mathbb{I}_{\{\lambda\}}(ds)$, $CVaR_{\lambda}(X)$ is a special case of $\rho_{\mu,\lambda}(X)$. It is well known that $CVaR_{\lambda}(X) = -\frac{1}{\lambda} \int_{0}^{\lambda} q_{X}(t)dt = \sup_{\mathbf{Q} \in \mathcal{Q}_{\lambda}} \mathbb{E}_{\mathbf{Q}}[-X],$

where

$$Q_{\lambda} = \left\{ \mathbf{Q} \text{ probability measure } : \mathbf{Q} \ll \mathbf{P}, \quad \frac{d\mathbf{Q}}{d\mathbf{P}} \leq \frac{1}{\lambda} \quad \mathbf{P} - a.s. \right\}.$$

The set \mathcal{Q}_{λ} coincides with the set \mathcal{Q} defined in the Theorem:

$$\mathcal{Q} = \left\{ \mathbf{Q} \text{ probability measure } : \mathbf{Q} \ll \mathbf{P}, \nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}} \succeq \nu_{\phi}, \int_{0}^{\lambda} q_{\nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}}}(t) dt = -1 \right\}.$$

To verify, consider a $\mathbf{Q} \in \mathcal{Q}$. Recall that

$$\begin{split} \rho_{\mu,\lambda}(X) &= \int_{[0,\lambda]} CVaR_{\gamma}(X)\mu(d\gamma) = -\int_{0}^{\lambda} q_X(t)\phi(t)dt = \int_{0}^{\lambda} q_X(t)q_{\nu_{\phi}}(t)dt, \\ \text{where } \nu_{\phi}([-\phi(0), -\phi(t)]) &:= t, \ q_{\nu_{\phi}}(t) = -\phi(t), \ \forall t \in [0,\lambda]. \\ \text{In this case, } -\phi(t) &= -\int_{(t,1]} \frac{1}{s}\mu(ds) = -\frac{1}{\lambda}\mathbb{I}_{[0,\lambda)}(t) \text{ and } q_{\nu_{\phi}}(t) = -\phi(t). \end{split}$$

$$\begin{split} \nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}} \succeq_{uni(\lambda)} \nu_{\phi} \Leftrightarrow \int_{0}^{t} q_{-\nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}}}(s) ds \geq \int_{0}^{\lambda} q_{\nu_{\phi}}(t) dt &= \int_{0}^{t} -\frac{1}{\lambda} \mathbb{I}_{[0,\lambda)}(s) ds. \end{split}$$
 If there is a $s \in [0, \lambda]$ s.t. $\frac{d\mathbf{Q}}{d\mathbf{P}}(s) > \frac{1}{\lambda}$, then $q_{-\nu_{\frac{d\mathbf{Q}}{d\mathbf{P}}}}(s) < -\frac{1}{\lambda}$, and since $q_{-\nu_{\frac{d\mathbf{Q}}{d\mathbf{P}}}}(t)$ is monotone increasing,

$$-1 = \int_0^\lambda q_{-\nu_{\underline{d}\mathbf{Q}}}(t)dt = \int_0^s q_{-\nu_{\underline{d}\mathbf{Q}}}(t)dt + \int_s^\lambda q_{-\nu_{\underline{d}\mathbf{Q}}}(t)dt < -\frac{s}{\lambda} - \frac{\lambda - s}{\lambda} = -1.$$

If
$$\mathbf{Q} \in \mathcal{Q}_{\lambda}$$
. Then $\frac{d\mathbf{Q}}{d\mathbf{P}} \leq \frac{1}{\lambda}$ **P**-a.s. implies
$$\int_{0}^{t} q_{\nu_{-}\frac{d\mathbf{Q}}{d\mathbf{P}}}(s)ds \geq -\frac{t}{\lambda} = \int_{0}^{t} -\frac{1}{\lambda}\mathbb{I}_{[0,\lambda)}(s)ds = \int_{0}^{t} q_{\nu_{\phi}}(s)ds,$$

for all $t \in [0, \lambda]$. So the distribution measure of $-\frac{d\mathbf{Q}}{d\mathbf{P}}$ is λ -quantile uniformly preferred over ν_{ϕ} , and it is also true that

$$\int_0^\lambda q_{\nu_{-\frac{d\mathbf{Q}}{d\mathbf{P}}}}(t)dt = \mathbb{E}\left[-\frac{d\mathbf{Q}}{d\mathbf{P}}\right] = -1.$$

THANK YOU!