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Summary of this talk:
e Define the class of A\-quantile dependent convex measures of risk.
e Define the A-quantile dependent Fatou property.

e Give the robust representation of this class of risk measures.

e [ixample: the Weighted VaR.



e Measures of risk : capital requirements can be added to a financial posi-

tion to make it acceptable.

e Axioms of convex measures of risk: for X, Y € X,
— Monotonicity: If X <Y, then p(X) > p(Y).
— Cash invariance: If m € R, then p(X +m) = p(X) — m.
— Convexity: plaX +(1—a)Y) < ap(X)+ (1 —a)p(Y), a € [0,1].
p is coherent if in addition:

— Positive homogeneity: p(AX) = Ap(X), forall A >0and X € X



Robust Representation of Convex Measures of Risk:

Let (Q, F,P) be a given probability space. Consider a proper convex mea-
sure of risk p: L - RUoo,1 < p < oo.

If p is lower semicontinuous, it is well-known that p has following robust

representation:

p(X) = sup (Eq[—X] — p"(@Q)),
QcQ

with @ = {Q probability measures : Q < P} and p*(Q) the Fenchel-

Legendre transformation of p.

If p is coherent, then p(X) = supg. g Eq|—X] for some set QcC Q.

Key point to the representation: the lower semicontinuity < Fatou property.



Literatures on Fatou property and robust representation of p:

e Delbaen (2000): Coherent real-valued p on L.
The Fatou property: (X,,) C L™, | X,| < C, then

X, — X € L™ P-as., implies p(X) < liminf, . p(X,).
e Follmer and Schied (2004): Convex real-valued p on L.

e Biagini and Frettelli (2009): Convex proper p on L?; 1 < p < o0.
Fatou property: (X,) C LP, 1 <p < o0, | X,| <Y P-as., Y € LP then

X, — X P-as. for some X € L implies p(X) < liminf, . p(X,).

e Kaina and Riischendorf (2009): robust representation of a convex proper

pon LP 1<p<oo.



Some concerns:

e The Fatou property is the key point p to be representable. However, the

boundedness of the sequence X, is in practice not easy to check.

e In practice, often only the loss of a financial position up to some fixed

level 1s concerned.

e [f a convex measure of risk depends only on the left tail of the random

variables, would the Fatou property be weakened and easier to check?”

Answer: Yes!



Examples:
e Value-at-Risk: VaR\(X) := —qy(\) = ¢_x(1 = A)
Not a convex measure of risk.

e Conditional VaR: CVaRy(X) = 1 [*VaR,(X)dy =

A coherent measure of risk.

e Weighted VaR: p,(X) = f CVaR%u(d’y — fo qx(t

with u a probability measure on [0, 1] and ¢(t) := f(t N L

A coherent measure of risk.

A+
AOqX

(t)dt



Definition 0.1 A convex measure of risk p : L — R U oo s A-quantile

dependent, if
XLixeqrony = Yhy<gioyy P — as implies p(X) = p(Y),

i.e., p depends on the the random variables only up to their A-quantiles.

Reward: weaker Fatou property required for the representation.



Fatou property of a \-quantile dependent risk measure:

Definition 0.2 (A-quantile Fatou property)
For any sequence (X,) C LP such that qyx (A\) < ¢y, for some cy € R

and all n € N,

X, — X P —a.s. forsomeX € L’ implies p(X) <liminf p(X,,).

n—:oo

Comparison:

Delbaen (2000): |X,| < C,

Biagini and Frettelli (2009): | X,| <Y

So: [ Xy <C = |X,| <Y =qy () <cn

If only the losses of the financial positions are considered, then 0 will be a

natural upper bound of the quantiles.



Robust representation of A-quantile dependent convex mea-

sures of risk:

Theorem 0.3 Let p: LY - RUoo, 1 < p < oo, be a proper A-quantile

dependent convexr measure of risk, then the following are equivalent:

1. p is o(LP, (LP))-lower semicontinuous.

2. p(X) = supqeo, (Eq[—=X] — p*(Q)),
with p* the Fenchel-Legendre transformation of p and

Q, = {Q probability measures : Q < P, %2 € (L")'}.
3. p is continuous from above.

4. p has the A-quantile Fatou property.



SKETCH OF PROOF:

“1=2=3": see Theorem 4.31 of Follmer and Schied (2004) for L™ case

or Theorem 3.3 of Kaina and Riischendorf (2009) for L? case.

“3=- 4”: Continuous from above=- p has Fatou property (BF(2009))

= p has A-quantile dependent Fatou property:.

“4=17: Show that C = {p < ¢} is weakly closed. Equivalently, show
C, =CN{X e L?:|X]|, <r}is weakly closed for all » > 0.
For (X,) C C, s.t. X,, — X in LP-norm, 3 subsequence X, s.t.
Xy, — X P-as.
= q}nk()\) is uniformly bounded=- p(X) < liminf, . p(X,) < ¢,

= X € C, and C, is strongly closed = C, is weakly closed.



An Example: The A-quantile dependent Weighted VaR.

Definition 0.4 p, , : L — RUoo, 1 <p < o0, s defined as

A A
pur(X) = o CVaR,(X)pu(dy) = _A qx (t)o(t)di :/0 QX<t>C]u¢<t>dt-

where (v 1s a probability measure on [0,1] s.t. u((A,1]) =0, and assume
u({0}) = 0.

And —¢(t) = f(t,A] Lu(s) is monotone increasing on [0,A], it can be
viewed as a quantile function of a probability distribution measure vy
defined as vy(|—¢(0), —p(t)]) :=1t, and v4(0) =1 — A.

Then q,,(1) :== —9¢(t), Vt € [0, A].

Notice that foA Qv (t)dt = —1.



pux 18 A-quantile law invariant:

Definition 0.5 A convex risk measure p : LP — R U 0o s A-quantile

law wnvariant, if for any X,Y € LP,

X]I{ng}m} and Y]I{qu;(A)} have same distribution implies p(X) = p(Y').

Recall the definition of A-quantile dependent convex measure of risk:

p is A-quantile dependent, if for any X, Y € L?



A-quantile uniform preference (second order stochastic domi-

nance) of two probability distribution measures ;. and v:

Definition 0.6 Let p, v be two probability distribution measures. L
15 A-quantile uniformly preferred over v if for any “A-quantile utility
function” u defined as u(x) = uo(x)Liz<q, )y +20(q(A))Lizsg, 1)y with ug

a utility function, the following 1s true:

A A
/ udp > / udv.
0 0

t
(4 # v = qu ds>/qy( )ds, Vt € [0, \]

Proposition 0.7

A
— / t)dt > / h(t)q,(t)dt, ¥ decreasing h : [0, \] — R™.
0



Robust representation of p,, \:

Recall

A A
pualX) = | CVaR(Xuld) = - / ax(D)(t)dt = / ax (), (£)dt.

Lemma 0.8 Define

A
o = {l/ . v distribution measure such that v = vy and / q,(t)dt = 1} .
A) 0

Then for X € L?,

Pun(X) = maX/O qx(t)q,(t)dt.

ved

The mazimum is obtained by taking v € ¢ s.t. gy = qu,.



Theorem 0.9 (Robust representation of pM,A)

For X e LP, 1 <p< o0,

pur(X) = max Eq[~X],

QeQ
with Q =
{mebabilz’ty measure : Q K< P, V—Zlg—g %(A) vs and fOA b (1)t = _1}.
uni -1
The maztmum is obtained by choosing Qx € Q such that CZ:ZQ—PX = f(X),

where the decreasing function f is given by:

(

O(Fx(x)) if © is a continuity point of Fy,
flz) =

FX((E)_lFX@_) F};f((;z) o(t)dt if x is a discrete point of F,
\

for Fx(x) < X and f(x) =0, otherwise.



Example: CVaR) for A € (0,1).
Take p(ds) = Iy (ds), CVaR\(X) is a special case of p, \(X).

It is well known that CVaR\(X) = —1 [*qx(t)dt = supqeo, Eq[—X],
where
. dQ 1
Q) = ¢ Q probability measure : Q < P, P < x P—a.s. ;.

The set Q) coincides with the set O defined in the Theorem:

A
Q= {Q probability measure : Q K P,v 4 = V¢>/ W aq (t)dt = 1} .
dpP Y 0 —JP



To verify, consider a Q € Q. Recall that

A A
pu(X) = [ CVaR (X)uldy) = - / ax(H)o(t)dt / ax (Vg (£)dt

[0,
where wy([—0(0), ~6(1)) = 1. 4 (t) = —0(0). ¥t € [0.]
In this case, —¢(t) = — f( 1 shlds) = —1Ijo.0 () and gy, (t) = —(t).

A t
1
de%V(:)/ y _/tht:/——]l s)ds.
g = q- d_ 0q¢() O Lo (s)
If there is a s € [0, \] s.t. %(s) , then ¢_ Vd_Q<S> < —1, and since
q_u (1) is monotone increasing,

Q[
=F

S A— S

A S A
—1= / G—v . (t)dt = / Gy, (T dt+/ Gy, (D)dt < ——— = —1.
, gl = | Qo (A | g (Bl < =3=3




If Qe 9,. Then g P-a.s. implies

t / toq t
/ q, dQ(S)dS > —— :/ —~lp.»)(s)ds —/ q%( s)ds,
0 ~ap A 0o A 0

for all £ € [0, A]. So the distribution measure of —d—g is A-quantile uniformly

preferred over vy, and it is also true that

A
I qy_%(t)dt =E[-3] = -1.



THANK YOU!



