Infinite Horizon Optimal Search Problem with Hiring and Firing Options

Mingxin Xu
Department of Mathematics and Statistics
University of North Carolina at Charlotte
mxu2@uncc.edu

Presentation at
The Third Western Conference on Mathematical Finance
November 13 - 15, 2009, UCSB

Optimal Stopping Problem at Study

Sequentially hire and fire candidates who arrive at random times.

Feature:

- Random arrival times of candidates or opportunities
- Two interwoven sequences of stopping times
- Infinite time horizon

Application:

- Similar to the 'secretary problem' but with hiring and firing options
- Job search problem with accepting and quitting options
- Investment and de-investment problem with repeat opportunities

One Candidate

• Candidate process Y_t is an \mathbb{R} -valued Itô diffusion process on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F})_{t\geq 0}, P^{s,\nu})$:

$$dY_t = \mu(Y_t)dt + \sigma(Y_t)dB_t, \quad \forall t \ge s,$$

with initial distribution

$$P^{s,\nu}(Y_s \in F) = \nu(F), \quad \forall F \in \mathcal{B}(\mathbb{R}) \text{ (Borel sigma-algebra on } \mathbb{R}).$$

Note that $P^{s,y}$ is the family of probability measures accompanying the strong Markov family Y_t with initial value y such that

$$P^{s,\nu}(F) = \int_{\mathbb{R}} P^{s,y}(F)\nu(dy), \quad \forall F \in \mathcal{F}.$$

• Choose optimal hiring time τ and firing time ζ :

$$v(y) = \sup_{(\tau,\zeta)\in\mathcal{T}} E^{0,y} \left[\left(\int_{\tau}^{\zeta} e^{-rt} f(Y_t) dt + e^{-r\tau} N(Y_\tau) + e^{-r\zeta} K(Y_\zeta) \right) \mathbb{I}_{\{\tau<\zeta\}} \right],$$

where s = 0, $Y_0 = y$ and

 $\mathcal{T} = \{(\tau, \zeta) : \tau \text{ and } \zeta \text{ are } P^{0,y}\text{-a.s. finite stopping times such that } \tau \leq \zeta\}.$

Multiple Candidates

• Raw processes Y_t^i are i.i.d. with dynamics given by

$$dY_t^i = \mu(Y_t^i)dt + \sigma(Y_t^i)dB_t^i, \quad \forall t \ge s, \quad i = 0, 1, 2, ...,$$

and initial distribution ν

$$P^{s,\nu}(Y_s^i \in F) = \nu(F), \quad \forall F \in \mathcal{B}(\mathbb{R}), \quad i = 0, 1, 2, \dots$$

• Waiting times $s_1, s_2, ...$ is a sequence of i.i.d. random variables whose moment generating function exist

$$\chi(u) = E[e^{-us_i}] < \infty, \quad i = 1, 2, \dots$$

• Decision times are

$$S = \{ (\tau_i, \zeta_i) : (\tau_i, \zeta_i) \text{ are a.s. finite stopping times such that}$$

 $0 \le \tau_0 \le \zeta_0 \le T_1 \le \tau_1 \le \zeta_1 \le T_2 \le \tau_2 \le \dots \}, \text{ where } T_i = \zeta_{i-1} + s_i.$

• Candidate processes are

$$Z_t^0 = Y_t^0, \quad (Y_0^0 = y)$$

$$Z_t^i = Y_t^i \circ \theta_{T_i}^{-1}, \quad t \ge T_i, \quad i = 1, 2, ...,$$

where θ_s is the shift operator, i.e.,

$$dZ_t^i = \mu(Z_t^i)dt + \sigma(Z_t^i)dB_t^i, \quad \forall t \ge T_i.$$

Infinite Horizon Optimal Stopping Problem

Main problem:

$$v(y) = \sup_{(\tau_i, \zeta_i) \in \mathcal{S}} E^y \left[\sum_{i=0}^{\infty} \left(\int_{\tau_i}^{\zeta_i} e^{-rt} f(Z_t^i) dt + e^{-r\tau_i} N(Z_{\tau_i}^i) + e^{-r\zeta_i} K(Z_{\zeta_i}^i) \right) \mathbb{I}_{\{\tau_i < \zeta_i\}} \right].$$

Viewed as a restarting problem:

$$v(y) = \sup_{(\tau,\zeta)\in\mathcal{T}} E^y \left[\left(\int_{\tau}^{\zeta} e^{-rt} f(Y_t) dt + e^{-r\tau} N(Y_\tau) + e^{-r\zeta} K(Y_\zeta) \right) \mathbb{I}_{\{\tau<\zeta\}} + e^{-r\zeta} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right].$$

Here

$$e^{-r\zeta}\chi(r)\int_{\mathbb{R}}v(x)\nu(dx) = E^y\left[e^{-rT_1}v(Z_{T_1}^1)\right].$$

A Little History

Standard optimal stopping problem:

$$v(y) = \sup_{\zeta} \mathbb{E}^{y} \left[\int_{0}^{\zeta} e^{-rt} f(Y_{t}) dt + e^{-r\zeta} K(Y_{\zeta}) \right]$$

Joint work with Masahiko Egami (2008):

$$v(y) = \sup_{\zeta \le \tau} \mathbb{E}^{y} \left[\int_{0}^{\zeta} e^{-rt} f(Y_{t}) dt + e^{-r\zeta} K(Y_{\zeta}) - \int_{0}^{\tau} c e^{-rt} dt + e^{-r\tau} X_{\tau}^{i} \right]$$

Current problem:

$$v(y) = \sup_{\tau \le \zeta} E^y \left[\left(\int_{\tau}^{\zeta} e^{-rt} f(Y_t) dt + e^{-r\tau} N(Y_\tau) + e^{-r\zeta} K(Y_\zeta) \right) \mathbb{I}_{\{\tau < \zeta\}} + e^{-r\zeta} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right]$$

Simple Brownian Model with Linear Benefit/Cost

- Let $\mu(\cdot) = 0$, $\sigma(\cdot) = 1$, then $Y_t = B_t$ is a standard Brownian motion starting at y.
- The benefit and cost functions are assumed to be linear: f(x) = ax, N(x) = cx, K(x) = bx.
- Assume that the constants satisfy a br > 0, a + cr > 0, b + c > 0.
- One candidate problem:

$$v(y) = \sup_{(\tau,\zeta)\in\mathcal{T}} E^{0,y} \left[\left(\int_{\tau}^{\zeta} e^{-rt} aB_t dt + e^{-r\tau} cB_{\tau} + e^{-r\zeta} bB_{\zeta} \right) \mathbb{I}_{\{\tau<\zeta\}} \right].$$

• Associate to a pair of Markov decision problems sequentially,

$$u(y) = \sup_{\zeta} E^{0,y} \left[\int_{0}^{\zeta} e^{-rt} a B_{t} dt + e^{-r\zeta} b B_{\zeta} \right],$$

$$v(y) = \sup_{\tau} E^{0,y} \left[\left(e^{-r\tau} c B_{\tau} + e^{-r\tau} u(B_{\tau}) \right) \mathbb{I}_{\{\zeta^{*} > 0\}} \right],$$

where ζ^* is the optimal stopping time for achieving value function u(y).

Solution to One Candidate Problem

The solution to the value function

$$u(y) = \sup_{\zeta} E^{0,y} \left[\int_0^{\zeta} e^{-rt} aB_t dt + e^{-r\zeta} bB_{\zeta} \right]$$

is standard to compute. When a - br > 0,

$$u(y) = \begin{cases} \frac{a}{r}y + \left(b - \frac{a}{r}\right)L^*e^{-(y-L^*)\sqrt{2r}}, & \text{for } y > L^*; \\ by, & \text{for } y \le L^*, \end{cases}$$

where $L^* = -\frac{1}{\sqrt{2r}}$. The continuation region is

$$\mathcal{C}_u = (L^*, \infty)$$

and the optimal stopping time is the first exit time of the continuation region

$$\zeta^* = \inf\{t : B_t \notin \mathcal{C}_u\} = \inf\{t : B_t \le L^*\}.$$

Solution to One Candidate Problem Continued

The solution to the value function

$$v(y) = \sup_{\tau} E^{0,y} \left[\left(e^{-r\tau} c B_{\tau} + e^{-r\tau} u(B_{\tau}) \right) \mathbb{I}_{\{\zeta^* > 0\}} \right],$$

where

$$u(y) = \begin{cases} \frac{a}{r}y + \left(b - \frac{a}{r}\right)L^*e^{-(y-L^*)\sqrt{2r}}, & \text{for } y > L^*; \\ by, & \text{for } y \le L^*, \end{cases}$$

is

$$v(y) = \begin{cases} \left(c + \frac{a}{r}\right)y + \left(b - \frac{a}{r}\right)L^*e^{-(y - L^*)\sqrt{2r}}, & \text{for } y \ge U^*; \\ \left(\left(c + \frac{a}{r}\right)U^* + \left(b - \frac{a}{r}\right)L^*e^{-(U^* - L^*)\sqrt{2r}}\right)e^{-(U^* - y)\sqrt{2r}}, & \text{for } y < U^*, \end{cases}$$

where U^* is the solution to

$$2\left(b - \frac{a}{r}\right)e^{-(U - L^*)\sqrt{2r}} = \left(c + \frac{a}{r}\right)(\sqrt{2r}U - 1),$$

when a + cr > 0, b + c > 0. The pair of optimal stopping time is thus $(\tau^*, \zeta^* \circ \theta_{\tau^*})$, where

$$\tau^* = \inf\{t : B_t \ge U^*\}, \quad \zeta^* \circ \theta_{\tau^*} = \inf\{t \ge \tau^* : B_t \le L^*\}.$$

Solution to Multiple Candidate Problem

• Multiple candidate problem:

$$v(y) = \sup_{(\tau,\zeta)\in\mathcal{T}} E^y \left[\left(\int_{\tau}^{\zeta} e^{-rt} aB_t dt + e^{-r\tau} cB_{\tau} + e^{-r\zeta} bB_{\zeta} \right) \mathbb{I}_{\{\tau<\zeta\}} + e^{-r\zeta} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right].$$

• Associate to a pair of Markov decision problems sequentially,

$$u(y) = \sup_{\zeta} E^{0,y} \left[\int_{0}^{\zeta} e^{-rt} aB_{t} dt + e^{-r\zeta} bB_{\zeta} + e^{-r\zeta} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right],$$

$$v(y) = \sup_{\tau} E^{0,y} \left[\left(e^{-r\tau} cB_{\tau} + e^{-r\tau} u(B_{\tau}) \right) \mathbb{I}_{\{\zeta^{*} > 0\}} + \left(e^{-r\tau} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right) \mathbb{I}_{\{\zeta^{*} = 0\}} \right].$$

Solution to Multiple Candidate Problem

If there exist unique solutions (L^*, U^*, m^{L^*, U^*}) to equations

$$m^{L,U} \sinh((U-L)\sqrt{2r}) = \gamma - \beta e^{-(U-I)\sqrt{2r}},$$

$$m^{L,U} \cosh((U-L)\sqrt{2r}) = \gamma \sqrt{2r}U + \beta e^{-(U-I)\sqrt{2r}},$$

$$m^{L,U} \left[\frac{1}{\chi(r)} - \Phi(L) - M^{-}(L,U) - \cosh((U-L)\sqrt{2r})M^{+}(L,U)\right]$$

$$= \gamma \sqrt{2r}\Psi(U) + \beta e^{I\sqrt{2r}}\Gamma(U),$$

which satisfy
$$L^* \leq I^* = \frac{m^{L^*,U^*}}{\beta\sqrt{2r}} - \frac{1}{\sqrt{2r}} < U^*$$
, where

$$\beta = \frac{1}{\sqrt{2r}} \left(\frac{a}{r} - b \right), \quad \gamma = \frac{1}{\sqrt{2r}} \left(\frac{a}{r} + c \right),$$

$$\Phi(L) = \int_{(-\infty, L]} \nu(dx), \quad \Psi(U) = \int_{[U, \infty)} x \nu(dx), \quad \Gamma(U) = \int_{[U, \infty)} e^{-x\sqrt{2r}} \nu(dx),$$

$$M^{-}(L, U) = \frac{\int_{(L, U)} \sinh((U - x)\sqrt{2r})\nu(dx)}{\sinh((U - L)\sqrt{2r})}, \quad M^{+}(L, U) = \frac{\int_{(L, U)} \sinh((x - L)\sqrt{2r})\nu(dx)}{\sinh((U - L)\sqrt{2r})},$$

Solution to Multiple Candidate Problem Continued

then the value functions are

$$u^{I^*}(y) = \begin{cases} \frac{a}{r}y + \beta e^{-(y-I^*)\sqrt{2r}}, & \text{for } y > I^*; \\ by + m^{L^*,U^*}, & \text{for } y \leq I^*, \end{cases}$$

$$v^{L^*,U^*}(y) = \begin{cases} m^{L^*,U^*}, & \text{for } y \leq L^*; \\ \left[cU^* + u^{I^*}(U^*)\right] \frac{\sinh((y-L^*)\sqrt{2r})}{\sinh((U^*-L^*)\sqrt{2r})} \\ + m^{L^*,U^*} \frac{\sinh((U^*-y)\sqrt{2r})}{\sinh((U^*-L^*)\sqrt{2r})}, & \text{for } L^* < y < U^*; \\ \left(\frac{a}{r} + c\right)y + \beta e^{-(y-I^*)\sqrt{2r}}, & \text{for } y \geq U^*, \end{cases}$$

and the Markov decision are made through

- continuation region: $C_v = (L^*, U^*),$
- hiring region: $\mathcal{H}_v = [U^*, \infty)$,
- firing region: $\mathcal{F}_v = (-\infty, L^*],$
- continuation region: $C_u = (I^*, \infty)$,
- firing region: $\mathcal{F}_u = (-\infty, I^*]$.

General Optimality Theorem

Theorem 1 (Variational Inequality) Suppose there exist adapted and continuous stochastic processes $(U_t^{s,y})_{t\geq s}$ and $(V_t^{s,y})_{t\geq s}$ for which the following conditions hold for all $y \in \mathbb{R}$:

a.
$$e^{-rt}U_t^{s,y} \ge \int_s^t e^{-ru}f(Y_u)du + e^{-rt}K(Y_t) + e^{-rt}\chi(r)\int_{\mathbb{R}} V_0^{0,z}\nu(dz), \ \forall t \ge s, \ P^{s,y}-a.s.,$$

b. $e^{-rt}U_t^{s,y}$ is a uniformly integrable supermartingale, and

c. there exists a stopping times $\zeta^* \in \mathcal{R}_s$ such that

$$U_s^{s,y} = E^{s,y} \left[\int_s^{\zeta^*} e^{-rt} f(Y_t) dt + e^{-r\zeta^*} K(Y_{\zeta^*}) + e^{-r\zeta^*} \chi(r) \int_{\mathbb{R}} V_0^{0,z} \nu(dz) \right];$$

d.
$$e^{-rt}V_t^{0,y} \ge e^{-rt}N(Y_t) + e^{-rt}U_t^{t,Y_t}, \ \forall t \ge 0, \ P^{0,y}-a.s.$$

e.
$$V_t^{0,y} \ge \chi(r) \int_{\mathbb{R}} V_0^{0,z} \nu(dz), \ \forall t \ge 0, \ P^{0,y} - a.s.$$

f. $e^{-rt}V_t^{0,y}$ is a uniformly integrable supermartingale, and

g. there exists a stopping times $\tau^* \in \mathcal{R}_0$ such that

$$V_0^{0,y} = E^{0,y} \left[\left(e^{-r\tau^*} N(Y_{\tau^*}) + e^{-r\tau^*} U_{\tau^*}^{\tau^*,Y_{\tau^*}} \right) \mathbb{I}_{\{\tau^* < \zeta^*\}} + \left(e^{-r\tau^*} \chi(r) \int_{\mathbb{R}} V_0^{0,z} \nu(dz) \right) \mathbb{I}_{\{\tau^* = \zeta^*\}} \right],$$

where $\zeta^* \in \mathcal{R}_{\tau^*}$ is the optimal stopping time for achieving $U_{\tau^*}^{\tau^*,Y_{\tau^*}}$ in condition (c). If $N(y) + U_0^{0,y} \leq \chi(r) \int_{\mathbb{R}} V_0^{0,z} \nu(dz)$ for all $y \in \mathbb{R}$, then let $\tau^* = \zeta^* = 0$ and v(y) = 0 is the optimal value function. Otherwise $V_0^{0,y}$ is the optimal value function, and (τ^*, ζ^*) is a pair of optimal stopping times.

Corollary 2 (Least Superharmonic Majorant) Suppose that $u : \mathbb{R} \to \mathbb{R}$ and $v : \mathbb{R} \to \mathbb{R}$ are continuous functions that jointly satisfy the conditions

- **h.** $u(x) \geq K(x) + \chi(r) \int_{\mathbb{R}} v(z) \nu(dz), \ \forall x \in \mathbb{R},$
- i. $e^{-rt}u(Y_t) + \int_0^t e^{-ru}f(Y_u)du$ is a $P^{0,y}$ uniformly integrable supermartingale for all $y \in \mathbb{R}$, and
- **j.** for each $y \in \mathbb{R}$ there exists a stopping time $\zeta^* \in \mathcal{R}_0$ such that

$$u(y) = E^{0,y} \left[\int_0^{\zeta^*} e^{-ru} f(Y_u) du + e^{-r\zeta^*} K(Y_{\zeta^*}) + e^{-r\zeta^*} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right];$$

- **k.** $v(x) \ge \max \{u(x) + N(x), \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\}, \forall x \in \mathbb{R},$
- 1. $e^{-rt}v(Y_t)$ is a $P^{0,y}$ uniformly integrable supermartingale for all $y \in \mathbb{R}$, and
- **m.** for each $y \in \mathbb{R}$ there exists a stopping time $\tau^* \in \mathcal{R}_0$ such that

$$v(y) = E^{0,y} \left[\left(e^{-r\tau^*} N(Y_{\tau^*}) + e^{-r\tau^*} u(Y_{\tau^*}) \right) \mathbb{I}_{\{\zeta^* > 0\}} + \left(e^{-r\tau^*} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right) \mathbb{I}_{\{\zeta^* = 0\}} \right],$$

where $\zeta^* \in \mathcal{T}_{\tau^*}$ is the solution to (j) for $u(Y_{\tau^*})$, i.e.,

$$u(Y_{\tau^*}) = E^{0,Y_{\tau^*}} \left[\int_0^{\zeta^*} e^{-ru} f(Y_u) du + e^{-r\zeta^*} K(Y_{\zeta^*}) + e^{-r\zeta^*} \chi(r) \int_{\mathbb{R}} v(x) \nu(dx) \right].$$

If $u(x) + N(x) \leq \chi(r) \int_{\mathbb{R}} v(z) \nu(dz)$ for all $x \in \mathbb{R}$, then let $\tau^* = \zeta^* = 0$ and v(y) = 0 is the optimal value function. Otherwise, the optimal value function v(y) is a positive function, and $(\tau^*, \zeta^* \circ \theta_{\tau^*})$ is a pair of optimal stopping times.

Corollary 3 (Variational Inequality with Smooth Pasting) Suppose $u : \mathbb{R} \to \mathbb{R}$ and $v : \mathbb{R} \to \mathbb{R}$ satisfies

- 1. $u \in C^1(\mathbb{R})$ and $v \in C^1(\mathbb{R})$,
- 2. $u(x) \ge K(x) + \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)$, $\forall x \in \mathbb{R}$, Now define the continuation region as $C_u = \{x \in \mathbb{R} : u(x) > K(x) + \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\}$ and the firing region as $\mathcal{F}_u = \{x \in \mathbb{R} : u(x) = K(x) + \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\}$,
- 3. $v(x) \ge \max \{u(x) + N(x), \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\}, \forall x \in \mathbb{R},$ Now define the continuation region as $C_v = \{x \in \mathbb{R} : v(x) > \max \{u(x) + N(x), \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\}\},$ the hiring region as $\mathcal{H}_v = \{x \in \mathbb{R} : v(x) = u(x) + N(x)\},$ and the firing region as $\mathcal{F}_v = \{x \in \mathbb{R} : v(x) = \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)\},$
- 4. Y_t spends zero local time on $\partial \mathcal{C}_u \cup \partial \mathcal{C}_v$ a.s.: $E^{0,y}[\int_0^\infty \mathbb{I}_{\partial \mathcal{C}_u}(Y_t)dt] = 0$ and $E^{0,y}[\int_0^\infty \mathbb{I}_{\partial \mathcal{C}_v}(Y_t)dt] = 0$, $\forall y \in \mathbb{R}$,
- 5. $\partial C_u \cup \partial C_v$ is a Lipschitz surface,
- 6. $u \in C^2(\mathbb{R} \backslash \partial \mathcal{C}_u)$ and the second order derivative of u is locally bounded near $\partial \mathcal{C}_u$, and $v \in C^2(\mathbb{R} \backslash \partial \mathcal{C}_v)$ and the second order derivative of v is locally bounded near $\partial \mathcal{C}_v$,
- 7. $Lu + f \leq 0$ on \mathcal{F}_u , and Lu + f = 0 on \mathcal{C}_u , $Lv \leq 0$ on $\mathcal{H}_v \cup \mathcal{F}_v$, and Lv = 0 on \mathcal{C}_v , Now define $\zeta^* = \inf\{t \geq 0 : Y_t \notin \mathcal{C}_u\}$ and $\tau^* = \inf\{t \geq 0 : Y_t \notin \mathcal{C}_v\}$,
- 8. $\zeta^* < \infty \text{ and } \tau^* < \infty, P^{0,y} a.s.,$
- 9. the family $\{u(Y_{\zeta}): \zeta \text{ is a stopping time such that } \zeta \leq \zeta^*\}$ is uniformly integrable, and the family $\{v(Y_{\tau}): \tau \text{ is a stopping time such that } \tau \leq \tau^*\}$ is uniformly integrable, $\forall y \in \mathbb{R}$,
- If $u(x) + N(x) \leq \chi(r) \int_{\mathbb{R}} v(z)\nu(dz)$ for all $x \in \mathbb{R}$, then let $\tau^* = \zeta^* = 0$ and v(y) = 0 is the optimal value function. Otherwise, the optimal value function v(y) is a positive function, and $(\tau^*, \zeta^* \circ \theta_{\tau^*})$ is a pair of optimal stopping times.

Future Work

- New candidates arrive at random times $s_1, s_1 + s_2, ...$ where s_i are i.i.d. random variables. The arrival of the new candidate can immediately affect the decision about the current candidate.
- Limit the model to finite number of candidates.
- Impose an exponentially distributed final time for all operations.
- A random number of candidates arrives simultaneously, but only one candidate will be under consideration.
- At any given time, up to a fixed number of candidates can be under consideration.