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Performance measurement of

investment strategies
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Market environment

Riskless and risky securities

• (Ω,F , P) ; W = (W 1, . . . , Wd) standard Brownian Motion

• Traded securities

1 ≤ i ≤ k

⎧⎪⎨
⎪⎩

dSi
t = Si

t

(
μi

tdt + σi
t · dWt

)
, Si

0 > 0

dBt = rtBtdt , B0 = 1

μt, rt ∈ R, σi
t ∈ R

d bounded and Ft-measurable stochastic processes

• Postulate existence of an Ft-measurable stochastic process λt ∈ R
d

satisfying

μt − rt 11 = σT
t λt

• No assumptions on market completeness
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Market environment

• Self-financing investment strategies π0
t , πt = (π1

t , . . . , π
i
t, . . . , π

k
t )

• Present value of this allocation

Xt =
k∑

i=0

πi
t

dXt =
k∑

i=1

πi
tσ

i
t · (λt dt + dWt)

= σtπt · (λt dt + dWt)
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Traditional framework

A (deterministic) utility datum uT (x) is assigned at the end of a

fixed investment horizon

UT (x) = uT (x)

No market input to the choice of terminal utility

Backwards in time generation of the indirect utility

V (x, s; T ) = sup
π

EP(uT (Xπ
T )|Fs; X

π
s = x)

V (x, s; T ) = sup
π

EP(V (Xπ
t , t; T )|Fs; X

π
s = x) (DPP)

V (x, s; T ) = EP(V (Xπ∗
t , t; T )|Fs; X

π∗
s = x)

The value function process becomes the intermediate utility

for all t ∈ [0, T )
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The value function process

| |
uT (x) ∈ F0V (x, s; T ) ∈ Fs V (x, t; T ) ∈ Ft

T0 s
|

t
|

• For each self-financing strategy, represented by π, the associated wealth Xπ
t

satisfies

EP(V (Xπ
t , t; T )|Fs) ≤ V (Xπ

s , s; T ) , 0 ≤ s ≤ t ≤ T

• There exists a self-financing strategy, represented by π∗, for which the

associated wealth Xπ∗
t satisfies

EP(V (Xπ∗
t , t; T )|Fs) = V (Xπ∗

s , s; T ) , 0 ≤ s ≤ t ≤ T

• At expiration, V (x, T ; T ) = uT (x) ∈ F0
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Study of the value function process

• “Arbitrary” environments

Duality methods

Martingale representation results

• Markovian environments

HJB equation

Feedback optimal controls

Weak solutions

...
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A stochastic PDE for the

value function process
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Intuition

• Assume that, for t ∈ [0, T ], the value function V (x, t) solves

dV (x, t) = b (x, t) dt + a (x, t) · dWt

where b, a are Ft−measurable processes.

• Recall that for an arbitrary admissible portfolio π, the associated wealth
process, Xπ, solves

dXπ
t = σtπt (λtdt + dWt)

• Applying the Ito-Ventzell formula to V (Xπ
t , t) yields

dV (Xπ
t , t) = b (Xπ

t , t) dt + a (Xπ
t , t) · dWt

+Vx (Xπ
t , t) dXπ

t +
1

2
Vxx (Xπ

t , t) d 〈Xπ〉t + ax (Xπ
t , t) · d 〈W, Xπ〉t

=
(
b (Xπ

t , t) + Vx (Xπ
t , t) σtπt · λt + σtπt · ax(Xπ

t , t) +
1

2
Vxx (Xπ

t , t) |σtπt|2
)

dt

+ (a (Xπ
t , t) + Vx (Xπ

t , t) σtπt) · dWt
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Intuition (continued)

• By the monotonicity and concavity assumptions, the quantity

sup
π

(
Vx (Xπ

t , t) σtπt · λt + σtπt · ax(Xπ
t , t) +

1

2
Vxx (Xπ

t , t) |σtπt|2
)

is well defined

• Calculating the optimum π∗ yields

π∗t = −σ+
t

Vx

(
Xπ∗

t , t
)
λt + ax

(
Xπ∗

t , t
)

Vxx

(
Xπ∗

t , t
)

• Deduce that the above supremum is given by

M∗ (Xπ∗
t , t

)
= −

∣∣∣σtσ
+
t

(
Vx

(
Xπ∗

t , t
)
λt + ax

(
Xπ∗

t , t
))∣∣∣2

2Vxx

(
Xπ∗

t , t
)

• The drift coefficient b must satisfy

b
(
Xπ∗

t , t
)

= −M∗ (Xπ∗
t , t

)
10



SPDE for the value function process

• Market (σt, σ
+
t , λt); volatility a(x, t) ∈ Ft

dV =
1

2

|σσ+A(V λ + a)|2
A2V

dt + a · dW

V (x, T ) = uT (x) ∈ F0 ; A =
∂

∂x

• Feedback optimal portfolio vector

π∗t = π∗(Xπ,∗
t , t) = −σ+ A(V λ + a)

A2V
(X

π,∗
t t)

• Choices for the volatility process a?
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A Markovian example

• rt = r(Yt), μt = μ(Yt), σt = σ(Yt)

dYt = θ(Yt) dt + ΘT (Yt) dWt

• Value function

v(x, y, t; T ) = sup
π

E (uT (Xπ
T ) | Xπ

t = x, Yt = y)

• HJB equation

vt + sup
π

(
1

2
|σπ|2vxx + σπ · σσ+(λvx + Θvxy) +

1

2
ΘTΘ · vyy + θ · vy

)

= vt − 1

2

|σσ+(vxλ + Θvxy)|2
vxx

+
1

2
ΘTΘ · vyy + θ · vy = 0
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• The SPDE for the value function process

V (x, t) = v(x, Yt, t; T )

dV (x, t) = vt dt + vy · dY +
1

2
vyy · d〈Y 〉

HJB
=

(
1

2

|σσ+(vxλ + Θvxy)|2
vxx

− 1

2
ΘTΘ · vyy − θ · vy

)
dt

+ vy ·
(
θ dt + ΘT dW

)
+

1

2
vyy · ΘTΘ dt

=
1

2

|σσ+(Vxλ + ax(x, t))|2
Vxx

dt + a(x, t) · dW

• The volatility process is uniquely determined: a(x, t) = Θvy(x, Yt, t; T )
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Going beyond the deterministic

terminal utility problem
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Motivation (partial)

• Terminal utility might be ω-dependent

Liability management, indifference valuation

uT (x, ω) = −e−γ(x−CT (ω)) ; CT ∈ FT

Numeraire consistency

uT (x, ω) = −e−γT (ω)x

• Need to extend the value function process beyond T

• Need to manage liabilities of arbitrary maturities

How do we formulate investment
performance criteria?
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Investment performance process

U (x, t) is an Ft-adapted process, t ≥ 0

• The mapping x → U (x, t) is increasing and concave

• For each self-financing strategy, represented by π, the associated

(discounted) wealth Xπ
t satisfies

EP(U (Xπ
t , t) | Fs) ≤ U (Xπ

s , s), 0 ≤ s ≤ t

• There exists a self-financing strategy, represented by π∗, for which

the associated (discounted) wealth Xπ∗
t satisfies

EP(U (Xπ∗
t , t) | Fs) = U (Xπ∗

s , s), 0 ≤ s ≤ t
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Optimality across times

U (x, t) ∈ Ft

0
| |

U (x, s) ∈ Fs U (x, t) ∈ Ft

|
0
| |

U (x, s) = sup
A

E(U (Xπ
t , t)|Fs, Xs = x)

• What is the meaning of this process?

• Does such a process aways exist?

• Is it unique?
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Forward performance process

A datum u0(x) is assigned at the beginning of

the trading horizon, t = 0

U (x, 0) = u0(x)

Forward in time criteria

EP(U (Xπ
t , t)|Fs) ≤ U (Xπ

s , s), 0 ≤ s ≤ t

EP(U (Xπ∗
t , t)|Fs) = U (Xπ∗

s , s), 0 ≤ s ≤ t

Many difficulties due to “inverse in time”

nature of the problem
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The forward performance SPDE
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The forward performance SPDE

Let U (x, t) be an Ft−measurable process such that the mapping x → U (x, t)

is increasing and concave. Let also U = U (x, t) be the solution of the stochastic

partial differential equation

dU =
1

2

∣∣∣σσ+A (Uλ + a)
∣∣∣2

A2U
dt + a · dW

where a = a (x, t) is an Ft−adapted process, while A = ∂
∂x.

Then U (x, t) is a forward performance process.

The process a may depend on t, x, U, its spatial derivatives etc.
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Optimal portfolios and wealth

At the optimum

• The optimal portfolio vector π∗ is given in the feedback form

π∗t = π∗ (X∗
t , t) = −σ+A (Uλ + a)

A2U
(X∗

t , t)

• The optimal wealth process X∗ solves

dX∗
t = −σσ+A (Uλ + a)

A2U
(X∗

t , t) (λdt + dWt)
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Solutions to the forward performance SPDE

dU =
1

2

∣∣∣σσ+A (Uλ + a)
∣∣∣2

A2U
dt + a · dW

Local differential coefficients

a (x, t) = F (x, t, U (x, t) , Ux (x, t))

Difficulties

• The equation is fully nonlinear

• The diffusion coefficient depends, in general, on Ux and Uxx

• The equation is not (degenerate) elliptic
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The zero volatility case: a(x, t) ≡ 0
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Space-time monotone performance process

The forward performance SPDE simplifies to

dU =
1

2

∣∣∣σσ+A (Uλ)
∣∣∣2

A2U
dt

The process

U (x, t) = u (x,At) with At =
∫ t

0

∣∣∣σsσ
+
s λs

∣∣∣2 ds

with u : R × [0, +∞) → R, increasing and concave with respect to x, and

solving

utuxx =
1

2
u2

x

is a solution.

MZ (2006)

Berrier, Rogers and Tehranchi (2007)
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Performance measurement

time t1, information Ft1

risk premium

At1 =
∫ t1

0
|λ|2 ds

0
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0.4
0.6
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At1
+ u(x, t1)��� �������

U (x, t1) = u(x, At1) ∈ Ft1 25



Performance measurement

time t2, information Ft2

risk premium

At2 =
∫ t2

0
|λ|2 ds

0
0.2
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0.6

0.8
1
90

95

100

105

110

u(x,t2)

WealthTime

At2
+ u(x, t2)��� �������

U (x, t2) = u(x, At2) ∈ Ft2 26



Performance measurement

time t3, information Ft3

risk premium

At3 =
∫ t3

0
|λ|2 ds
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Time

At3
+ u(x, t3)��� �������

U (x, t3) = u(x, At3) ∈ Ft3 27



Forward performance measurement

time t, information Ft

market

Wealth

Time

u(x,t)

MI(t) + u(x, t)��� �������
U (x, t) = u(x, At) ∈ Ft
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Properties of the performance process

U (x, t) = u (x,At)

• the deterministic risk preferences u (x, t) are compiled with

the stochastic market input At =
∫ t

0
|λ|2 ds

• the evolution of preferences is “deterministic”

• the dynamic risk preferences u(x, t) reflect the risk tolerance

and the impatience of the investor
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Optimal allocations
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Optimal allocations

• Let X∗
t be the optimal wealth, and At the time-rescaling processes

dX∗
t = σtπ

∗
t · (λtdt + dWt)

dAt = |λt|2dt

• Define

R∗
t � r(X∗

t , At) r(x, t) = − ux(x, t)

uxx(x, t)

Optimal portfolios

π∗t = σ+
t λtR

∗
t
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A system of SDEs at the optimum

⎧⎨
⎩

dX∗
t = r(X∗

t , At)λt · (λt dt + dWt)

dR∗
t = rx(X∗

t , At)dX∗
t

π∗t = σ+
t λtR

∗
t

The optimal wealth and portfolios are explicitly constructed

if the function r(x, t) is known
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Concave utility inputs and

increasing harmonic functions
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Concave utility inputs and increasing harmonic functions

There is a one-to-one correspondence between strictly concave solutions u(x, t) to

ut =
1

2

u2
x

uxx

and strictly increasing solutions to

ht +
1

2
hxx = 0
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Concave utility inputs and increasing harmonic functions

• Increasing harmonic function h : R × [0, +∞) → R is represented as

h (x, t) =
∫
R

eyx−1
2y

2t − 1

y
ν (dy)

• The associated utility input u : R × [0, +∞) → R is then given by the

concave function

u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+s

2hx

(
h(−1) (x, s) , s

)
ds +

∫ x

0
e−h(−1)(z,0)dz

The support of the measure ν plays a key role in the form of the

range of h and, as a result, in the form of the domain and range of

u as well as in its asymptotic behavior (Inada conditions)
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Examples
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Measure ν has compact support

ν(dy) = δ0, where δ0 is a Dirac measure at 0

Then,

h (x, t) =
∫
R

eyx−1
2y

2t − 1

y
δ0 = x

and

u (x, t) = −1

2

∫ t

0
e−x+s

2ds +
∫ x

0
e−zdz = 1 − e−x+ t

2
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Measure ν has compact support

ν (dy) =
b

2
(δa + δ−a), a, b > 0

δ±a is a Dirac measure at ±a

Then,

h (x, t) =
b

a
e−

1
2a

2t sinh (ax)

If, a = 1, then

u (x, t) =
1

2

(
ln
(
x +

√
x2 + b2e−t

)
− et

b2x
(
x −

√
x2 + b2e−t

)
− t

2

)

If a �= 1, then

u(x, t) =
(
√

a)
1+ 1√

a

a − 1
e

1−√
a

2 t

β√
a
e−at + (1 +

√
a )x

(√
a x +

√
ax2 + βe−at

)
(√

a x +
√

ax2 + βe−at
)1+ 1√

a
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Measure ν has infinite support

ν(dy) =
1√
2π

e−
1
2y

2
dy

Then

h(x, t) = F

(
x√
t + 1

)
F (x) =

∫ x

0
e

z2

2 dz

and

u(x, t) = F
(
F (−1)(x) −√

t + 1
)
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Optimal processes and

increasing harmonic functions
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Optimal processes and risk tolerance

⎧⎨
⎩

dX∗
t = r(X∗

t , At)λt · (λt dt + dWt)

dR∗
t = rx(Xt,At) dX∗

t

Local risk tolerance function and fast diffusion equation

rt +
1

2
r2rxx = 0

r(x, t) = − ux(x, t)

uxx(x, t)

41



Local risk tolerance and increasing harmonic functions

If h : R × [0, +∞) → R is an increasing harmonic function then

r : R × [0, +∞) → R
+ given by

r (x, t) = hx

(
h(−1) (x, t) , t

)
=
∫
R

eyh(−1)(x,t)−1
2y

2tν (dy)

is a risk tolerance function solving the FDE

42



Optimal portfolio and optimal wealth

• Let h be an increasing solution of the backward heat equation

ht +
1

2
hxx = 0

and h(−1) stands for its spatial inverse

• Let the market input processes A and M by defined by

At =
∫ t

0
|λ|2 ds and Mt =

∫ t

0
λ · dW

• Then the optimal wealth and optimal portfolio processes are given by

X
∗,x
t = h

(
h(−1) (x, 0) + At + Mt,At

)
and

π∗t = hx

(
h(−1)

(
X

∗,x
t , At

)
, At

)
σ+

t λt
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Complete construction

Utility inputs and harmonic functions

ut =
1

2

u2
x

uxx
⇐⇒ ht +

1

2
hxx = 0

Harmonic functions and positive Borel measures

h(x, t) ⇐⇒ ν(dy)

Optimal wealth process

X∗,x = h
(
h(−1) (x, 0) + A + M,A

)
M =

∫ t

0
λ · dWs, 〈M〉 = A

Optimal portfolio process

π∗,x = hx

(
h(−1) (X∗,x, A) , A

)
σ+λ

The measure ν emerges as the defining element

ν ⇒ h ⇒ u

How do we choose ν and what does it represent for the investor’s
risk attitude?
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Inferring investor’s preferences
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Calibration of risk preferences to the market

Given the desired distributional properties of his/her optimal wealth in a specific

market environment, what can we say about the investor’s risk preferences?

Investor’s investment targets

• Desired future expected wealth

• Desired distribution

References

Sharpe (2006)

Sharpe-Golstein (2005)
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Distributional properties of the optimal wealth process

The case of deterministic market price of risk

Using the explicit representation of X∗,x we can compute the distribution,

density, quantile and moments of the optimal wealth process.

• P

(
X

∗,x
t ≤ y

)
= N

⎛
⎝h(−1) (y,At) − h(−1) (x, 0) − At√

At

⎞
⎠

• fX
∗,x
t

(y) = n

⎛
⎝h(−1) (y, At) − h(−1) (x, 0) − At√

At

⎞
⎠ 1

r (y, At)

• yp = h
(
h(−1) (x, 0) + At +

√
AtN

(−1) (p) , At

)

• EX
∗,x
t = h

(
h(−1) (x, 0) + At, 0

)
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Target: The mapping x → E
(
X

∗,x
t

)
is linear, for all x > 0.

Then, there exists a positive constant γ > 0 such that the investor’s forward

performance process is given by

U (x, t) =
γ

γ − 1
x

γ−1
γ e−

1
2(γ−1)At, if γ �= 1

and by

Ut (x) = ln x − 1

2
At, if γ = 1

Moreover,

E
(
X

∗,x
t

)
= xeγAt

Calibrating the investor’s preferences consists of choosing a time horizon, T ,

and the level of the mean, mx (m > 1).Then, the corresponding γ must solve

xeγAT = mx and, thus, is given by

γ =
ln m

AT

The investor can calibrate his expected wealth only for a single time horizon.

48



Relaxing the linearity assumption

• The linearity of the mapping x → E
(
X

∗,x
t

)
is a very strong assumption.

It only allows for calibration of a single parameter, namely, the slope, and

only at a single time horizon.

• Therefore, if one intends to calibrate the investor’s preferences to more re-

fined information, then one needs to accept a more complicated dependence

of E
(
X

∗,x
t

)
on x.

Target: Fix x0 and consider calibration to E
(
X

∗,x0
t

)
, for t ≥ 0

The investor then chooses an increasing function m (t) (with m (t) > 1) to

represent E
(
X

∗,x0
t

)
,

E
(
X

∗,x0
t

)
= m (t) , for t ≥ 0.

• What does it say about his preferences?

• Moreover, can he choose an arbitrary increasing function m (t)?
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Relaxing the linearity assumption

For simplicity, assume x0 = 1 and that ν is a probability measure. Then,

h(−1) (1, 0) = 0 and we deduce that

E
(
X

∗,1
t

)
= h (At, 0) =

∫ ∞
0

eyAtν (dy)

Clearly, the investor may only specify the function m (t) , t > 0, which can be

represented, for some probability measure ν in the form

m (t) =
∫ ∞
0

eyAtν (dy)
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Conclusions

• Space-time monotone investment performance criteria

• Explicit construction of forward performance process

• Connection with space-time harmonic functions

• Explicit construction of the optimal wealth and optimal portfolio processes

• The “trace” measure as the defining element of the entire construction

• Calibration of the trace to the market

• Inference of dynamic risk preferences

51


