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Abstract

Aims: The aim of this study is to compare some machine learning methods with traditional statistical parametric
analyses using logistic regression to investigate the relationship of risk factors for diabetes and cardiovascular
(cardiometabolic risk) for U.S. adults using a cross-sectional data from participants in a wellness improvement
program.
Methods: Logistic regression was used to find the relationship between individual risk factors, predictor and
cardiometabolic risk. Supervised machine learning methods were used to predict risk and produce a ranking of
variables’ importance. A clustering method was used to identify subpopulations of interest. Predictors were
divided into those that are nonmodifiable and those that are modifiable.
Results: The population comprised 217,254 adults of whom 8.1% had diabetes. Using logistic regression, six
variables were identified to be negatively related and eleven were positively related to cardiometabolic risk.
Three supervised machine learning classifiers (random forest, gradient boosting, and bagging) were applied
with average AUC to be 0.806. Each classifier also produced a ranking of variables’ importance. Four sub-
groups were identified with a k-medoid clustering algorithm, which were mainly distinguished by gender and
diabetes status.
Conclusions: The study illustrates that machine learning is an important addition to traditional logistic re-
gression in terms of identifying important cardiometabolic risk factors and ranking their importance and the
potential for interventions based on lifestyle and medications at an individual level.
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Introduction

The increase in the number of individuals developing
type 2 diabetes (T2D) continues to add a significant fi-

nancial burden to health care systems in the United States and
elsewhere.1,2 Established risk factors for T2D include a
family history of diabetes, excess weight gain, inactivity, and
a history of gestational diabetes. T2D is also more common in
certain racial and ethnic groups and is associated with serious
long-term complications, including premature death, heart
attacks, heart failure, stroke, and renal failure.3–5 Most no-
tably the risk of cardiovascular complications is driven, in
part, by clustering of factors, including insulin resistance,
obesity, abnormal plasma lipid profiles, and high blood
pressure in addition to hyperglycemia. There is also in-
creasing awareness of the contribution of nontraditional

factors related to social factors, including income, education,
and culture, as well as environmental factors.6

Recently, the use of big data analyses has suggested that
there are subtypes of individuals with T2D who may have
different trajectories related to long-term risk of diabetes-
related complications.7,8 At an individual level, risk factors
for T2D and the associated cardiovascular complications can
be stratified into modifiable through lifestyle changes (e.g.,
avoiding excess weight gain) and nonmodifiable (e.g., family
history). Furthermore, and within the hierarchy of modifiable
risk factors, it is likely that these can be differentially in-
fluential between and within individuals. Therefore, the aim
of this study was to assess the contribution of potentially
modifiable and nonmodifiable risk factors by applying ma-
chine learning to a cross-sectional dataset of U.S. adults
participating in a wellness improvement program.

1Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, California.
2Sansum Diabetes Research Institute, Santa Barbara, California.

DIABETES TECHNOLOGY & THERAPEUTICS
Volume 21, Number 5, 2019
ª Mary Ann Liebert, Inc.
DOI: 10.1089/dia.2018.0390

1

DIA-2018-0390-ver9-Liao_2P.3d 04/09/19 3:47pm Page 1



Methods

Dataset

The dataset source was a U.S. based provider of a work-
place health promotion and wellness programs, The Vitality
Group (TVG; www.thevitalitygroup.com). Program partici-
pants are employees and dependents of employers that con-
tract with The Vitality Group for incentives for participating
in physical activity and other healthy behaviors, which are
then exchangeable for rewards. Physical activity levels are
self-reported in an annual health risk assessment but are also
verified throughout the year either by device or gym utili-
zation. Gym visits are verified through a GPS mobile appli-
cation: a person has to be at the gym location for at least
30 min (the user interface is through a countdown timer on
the application). Visits recorded in this manner give rise to
‘‘standard workouts,’’ but if the participant is using a device
at the gym an advanced workout may be recorded using the
device. Sedentary hours are referred to the time spent awake

but inactive. The type of diabetes was not specified in the
dataset but among U.S. adults with a diagnosis of diabetes,
T2D accounts for more than 90% of cases.4

Participants also record a number of self-reported health-
related factors (presence of chronic diseases, including heart
disease; alcohol consumption and smoking behavior; and so
on) in addition to clinical (laboratory) measures that are re-
corded either at employer-sponsored health fairs or reported
by attending physicians. Stress was reported by participants
using a validated psychological distress scale (K10).9

For this study we focused on a cohort of 217, 254 people
who were in this study for 1 year between 2012 and 2015.
Figure 1 is a flowchart for the procedure of data preproces-
sing, model building, and model evaluation.

Preprocessing and imputation of data

For missing values, we used the R package MICE (Multi-
variate Imputation by Chained Equations) to impute missing

FIG. 1. Flowchart showing data preprocessing, model building, and model evaluation.
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values. MICE generates multiple imputations for incomplete
multivariate data by Gibbs sampling.10

Statistical analysis

Multivariate logistic regression was used to assess the
association between explanatory factors and diabetes risk.
We used the stepwise algorithm to choose important pre-
dictors,11 which would help avoid overfitting and increase the
interpretability of coefficients.

Machine learning methods

To understand the factors influencing cardiometabolic
risk, we applied two different machine learning methods:
supervised and unsupervised learning.

Data imbalance

The dataset was highly skewed showing 8% of participants
with and 92% of participants without a reported diagnosis of
diabetes. We used R package ROSE12 to address the data
imbalance problem when building the binary classifier.

Supervised learning methods

Supervised learning builds a function mapping of a set of
input attributes such as age, gender, body mass index (BMI),
and so on to a labelled output, such as the response variable
‘‘diabetes’’ labeled as 0 (without diabetes) and 1 (with dia-
betes). Since the diabetes variable is binary, the model is a
classifier. The analysis in this subsection was performed with
the R package caret.14

Three methods of machine learning were applied (Bag-
ging, Random Forest, and Gradient Boosting) to derive a
predictive model.15

To avoid the prediction performance being affected by
single random split of the dataset, we used nested cross-
validation, in which an outer 5-fold cross validation loop to
split the data into training and test folds and an inner 10-fold
cross validation loop were done for each classifier to choose
the tuning parameters that maximized the area under the ROC
curve (AUC) on the training fold. A receiver operating
characteristic (ROC) curve is created by plotting sensitivity
(true positive rate) against 1-specificity (false positive rate).
AUC is the area under the ROC curve, and it represents de-
gree of separability. When a model makes random guesses,
AUC will be 0.5. When AUC gets closer to 1.0, the model is
better at predicting diabetes cases as diabetes cases and
nondiabetes cases as nondiabetes cases. R package pROC16

was used for AUC computation.
In terms of computation time, for example, on a laptop with a

2.16GHz dual-core Intel(R) Celeron(R) CPU, it took 6 min to
build a random forest classifier in one inner loop of cross val-
idation. The speed for gradient boosting and bagging is close.

Unsupervised learning method

Unsupervised learning is used to identify underlying
groups in a dataset. One most commonly used unsupervised
learning method is clustering. To find subpopulations in this
dataset, a k-medoid clustering algorithm was applied: the
partitioning around medoids (PAM) algorithm, where me-
doid is the data point chosen as the ‘‘center’’ of a cluster.16–18

Note that for the clustering analysis, the balanced training set
obtained by undersampling was still used. The analysis in this
subsection was performed with the R package cluster.16

To apply the PAM algorithm, a metric must be chosen to
define the distance between data points. Since the dataset is a
mixture of both continuous and categorical variables, the

FIG. 2. Boxplot of waist circumference (left panel) and BMI (right panel) by gender and self-reported diagnosis of
diabetes. BMI, body mass index.
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Gower’s coefficient was used as the distance metric, which
handles mixed data types well.19

Results

Participants were aged 18–80 years (mean 43 – 12 years,
54.7% female). Of the total population of 217,254, 17,554
(8.1%) had diabetes, and the prevalence of diabetes was
higher for males (9.4% vs. 7.0%). Participant demographics
and health outcomes are shown in the Appendix Tables A1
and A2.

We compared the distribution of waist circumference
and BMI for both genders, separately for the group with
diabetes and the group without diabetes in Figure 2. In both
groups, average waist circumference of female participants
was smaller compared with male participants, but the dif-
ference was larger in the group without diabetes. The av-
erage BMI of female participants was lower compared with
male participants in the group without diabetes, but it was
higher compared with male participants in the group with
diabetes.

Figure 3 shows a comparison of fasting plasma glucose
(FPG) levels by age and BMI suggesting that for both genders,
FPG level increases as age or BMI increases, and females tend
to have a lower FPG than males given the same age and BMI.

Logistic regression

Tables 1 and 2 show estimated odds ratios of important
predictors for the logistic regression model. Predictors were
divided into those that are nonmodifiable (such as age and
sex) and those that are modifiable either by behavior change
(e.g., waist circumference and BMI) or medication + be-
havior change (e.g., cholesterol and blood pressure).

Supervised learning

Table 3 shows the average of four evaluation metrics for all
three machine learning classifiers described above together
with the traditional logistic regression model. Overall, the
three classifiers had similar performances although random
forest was slightly better than another two methods. Each
metric value by random forest is slightly better than that by

Table 1. Odds Ratios Using a Logistic Regression Model for Potentially Modifiable Predictors

Predictors Units OR (95% CI) P

BMI kg/m2 1.036 (1.029–1.044) <0.0001
Waist circumference cm 1.021 (1.018–1.024) <0.0001
Triglycerides mmol/L 1.553 (1.499–1.610) <0.0001
Systolic BP mmHg 1.016 (1.014–1.019) <0.0001
Diastolic BP mmHg 0.991 (0.987–0.995) <0.0001
Other health-related activitiesa count 0.935 (0.926–0.947) <0.0001
Kessler stress score 1.015 (1.008–1.022) <0.0001
Alcohol (no. of drinks/week) 0.965 (0.957–0.972) <0.0001
Daily sedentary time h 1.016 (1.009–1.023) <0.0001
Total cholesterol mmol/L 0.729 (0.706–0.752) <0.0001
Weekly verified standard workouts count 0.974 (0.957–0.991) 0.003

aOnline courses, participation in employer sponsored health events, flu shots, screening, etc. (0–12/week).
BMI, body mass index; BP, blood pressure; CI, confidence interval; OR, odds ratio; SD, standard deviation.

FIG. 3. Contour surface plot of FPG against age and BMI for female (n = 118,855, left) and male (n = 98,399, right). This
figure shows a comparison of FPG levels by age and BMI suggesting that for both genders, FPG level increases as age or
BMI increases, and females tend to have a lower FPG than males given the same age and BMI. FPG, fasting plasma glucose.
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logistic regression. Variable importance ranking by each
machine learning method is shown in Table 4.

Interpretation of supervised learning models

Machine learning methods measure a variable’s impor-
tance by computing the increase of the model’s prediction
error after permuting the variable. A variable is important if
permuting its values increases the prediction error; otherwise,
it is considered unimportant.20,21

There was no significant disagreement between the three
machine learning models in terms of which variables were
important. There were, however, differences between vari-
able importance in the logistic regression and machine
learning models. Lipids (a modifiable risk factor) were not
significant in the logistic regression model, although they
were in the machine learning models. Eating fruits and

vegetables, sleep, and exercise are important in the machine
learning models but not in the logistic regression model.
Figure 4 shows the relative ‘‘importance’’ of each risk factor
by three machine learning models.

Unsupervised learning

The k-medoid algorithm is partitioned, breaking the data-
set up into groups or clusters allowing for minimization of the
distance between points labeled to be in a cluster and a point
designated as the center of that cluster. In other words, ob-
jects in the cluster have more in common with each other than
they do with objects assigned to another cluster. The infor-
mation for each cluster is summarized by the medoid (center)
of the cluster.

Tables 5 and 6 include the variables in each medoid. The
number of people assigned to each is approximately equal:
the numbers from cluster 1 to cluster 4 are 7680, 6247, 6640,
and 7335, respectively. The percentage of self-reported dia-
betes cases from cluster 1 to cluster 4 is 1.3%, 4.5%, 98.1%,
and 100%, respectively. Cluster 1 (female) and 2 (male) are
nondiabetes clusters; cluster 3 (female) and 4 (male) are di-
abetes clusters. The ‘‘worst’’ combination of all character-
istics is shown by the medoid of cluster 4. Once again these
are separated into potentially modifiable and nonmodifiable
variables.

Table 3. Model Evaluation Metrics for Four

Machine Learning Methods

Model Accuracy Sensitivity Specificity AUC

Random forest 0.727 0.724 0.769 0.818
Bagging 0.724 0.725 0.712 0.801
Gradient boosting 0.726 0.725 0.729 0.799
Logistic regression 0.722 0.722 0.728 0.791

AUC, area under the curve.

Table 2. Odds Ratios Using a Logistic Regression

Model for Nonmodifiable Predictors

Predictors Units OR (95% CI) P

Age 18–80 Years 1.052 (1.047–1.053) <0.0001
Heart disease Yes/no 1.485 (1.218–1.819) <0.0001
No. of months

eligiblea
Months 1.012 (1.004–1.020) 0.003

Educationb 1
2 0.930 (0.754–1.145) 0.495
3 0.885 (0.727–1.076) 0.224
4 0.750 (0.610–0.922) 0.007

Chronic lung
disease

Yes/no 1.722 (1.073–2.847) 0.023

Gender Male/female 1.073 (1.007–1.144) 0.033

aNo. of months in the year that the individual participated in the
Vitality program (max. 12/year).

b1: Did not complete high school, 2: High school completed, 3:
College degree, 4: Postgraduate degree

Table 4. Comparison of Logistic Regression and Machine Learning to Determine Importance of Individual

Potentially-Modifiable Risk Factors for Cardiometabolic Disease

Predictors Logistic regression Random forest Gradient boosting Bagging

Waist circumference + + + +
Triglycerides + + + +
BMI + + + +
HDL cholesterol — + + +
Systolic BP + + + +
LDL cholesterol — + + +
Total cholesterol + + + +
Diastolic BP + + + +
Daily sedentary time + + + +
Other activities + + + +
Kessler Stress Score + + + +
Alcohol (no. of drinks/week) + + + +
Daily servings of fruits and vegetables — + + +
Daily hours of sleep — + + +
Weekly verified standard workouts — + + +
Weekly verified light workouts — + — +
Tobacco use — + + +
Weekly self-reported workouts — + + +

Important predictors: important (+), unimportant (—).
HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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Discussion

The increase in the number of individuals developing di-
abetes has added a significant financial burden to health care
systems.22 In the United States, diabetes care already ac-
counts for 1 of every 4 dollars spent on health care.23

Therefore, the most cost-effective approach to reducing the
burden of T2D and the associated serious cardiovascular
complications is to increase the focus on prevention.

A number of risk factors associated with the develop-
ment of T2D and the cardiovascular complications are well
established, including obesity, hypertension, and hyperlip-
idemia. However, given that rates of diabetes and compli-
cations vary between and within different populations, there
is growing interest in other contributing factors including
genetics, the environment, and sociocultural factors.24 For an
individual, risk factors can be stratified into nonmodifiable

(e.g., family history and age) and modifiable (e.g., blood
pressure).

In this study we used both traditional parametric methods
and newer machine learning methods to analyze cardiome-
tabolic data from a cohort of members of a large U.S.-based
provider of a workplace health promotion and wellness
programs. We compared three supervised machine learning
methods: random forest, bagging, and gradient boosting, and
a traditional statistical method: parametric multivariate lo-
gistic regression. Parametric models have strong model
specification, which may not be guaranteed; and machine
learning methods such as random forest can be considered as
nonparametric modeling methods, which avoid mis-
specification and hence reduce bias. Logistic regression may
not be the best statistical technique if there are significant
correlations between some of the regressor variables; and
machine learning methods such as random forest remedy this

FIG. 4. Risk factors’ importance ranking by three machine learning methods: random forest (left), gradient boosting
(middle), and bagging (right).

Table 5. Characteristics of the Medoids of Four Clusters for Nonmodifiable Risk Factors

Medoid

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Diabetes No No Yes Yes

Gender Female Male Female Male
Age (years) 44 39 55 48
Chronic lung disease No No No No
Cancer No No No No
Heart disease No No No No
Depression No No No No
No. of months eligible 8 8 12 8
Education College degree College degree College degree College degree
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by decreasing correlation, using only a subset of predictors to
create splits within the data.

The number of potentially modifiable risk factors and the
ability to track changes in them over time will inevitably in-
crease as new digital ecosystems become available.25 In the
future, expectations will shift to technology including machine
learning to produce meaningful personal benefits from using
these technologies, mainly as a consequence of advances in
sensor technology (especially miniaturization, increased
power, and improvements in esthetics), smartphone computing
capability, and artificial intelligence. Applying machine
learning to determine weighted risk for individual factors and
their changes with time using digital health technologies has
the potential to be more impactful for disease prevention.

There are some limitations to our analyses. First, we were
not able to stratify the diagnosis for the type of diabetes,
although it is likely that this population reflects the current
status of diabetes in the background U.S. population, where
the overwhelming majority has a diagnosis of T2D. Second,
we did not have access to the use of individual medications,
namely, therapies for hyperlipidemia and hypertension as
well as glucose-lowering medicines for those with diabetes.
Given the cross-sectional nature of our analyses, we were
therefore unable to determine the impact of these changes
over the individual risk factors over time. Third, there are
limitations to self-reported data although, as mentioned
earlier, with the increased availability of new health tech-
nologies for automatic data capture, the impact of this may
wane with time.26 Fourth, we also did not have access to
information on race and ethnicity. Currently in the United
States, over 29 million people are uninsured, with sub-
stantial inequalities in access to care along economic, gen-
der, and racial lines persisting.27 Previous studies have
documented that racial/ethnic minority groups also re-
ceived low quality of care, including preventative health
services, compared to their White counterparts, and that
racial/ethnic minority groups have higher rates of diabetes-
related complications.24

As the present study shows, big datasets are often plagued
by missing data. Some corrective measures may be taken;
although these cannot compensate for complete and accurate
data collection, such corrective measures can provide a
safeguard when dealing with missing data.

R packages exist to implement machine learning algo-
rithms that enable the process of analyzing large datasets and
help to reveal important explanatory factors. The vision for
the future of such models may likely be an integrated one. In
such a closed integrated system, data will be collected in real-
time from patients, processed through models such as those
discussed in this study, and then immediately fed back to the
patient in the form of information that focuses on the patient’s
modifiable risks. We are still some way from having such as
closed system, but models such as those discussed in this
study will be an important component.
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Appendix Table A1. Female Participants (n = 18,855), Self-Reported Diagnoses of Diabetes

and Heart Disease, and Measurements of Body Mass Index, Waist Size, Stress, Weekly

Alcohol Consumption, Fasting Plasma Glucose Levels, and Time Spent Inactive

Disease
prevalence

(%)
Average
measures

Year Age N Diabetes
Heart

disease BMI

Waist
size
(cm)

Stress
score

Alcohol
(no./week)

Sedentary
(h/day)

FPG
(mmol/L)

<40 4948 3.0 0.3 27.3 – 6.5 83.3 – 14.9 14.4 – 5.3 1.9 – 4.1 7.8 – 3.6 4.9 – 0.8
2012 40–60 7013 8.3 1.1 28.8 – 6.6 87.64 – 14.7 13.7 – 4.8 1.9 – 4.2 7.6 – 3.6 5.3 – 1.1

>60 1477 15.1 3.3 29.4 – 6.2 90.44 – 14.6 13.3 – 5.2 1.9 – 4.0 7.2 – 3.4 5.5 – 1.3
<40 8653 2.9 0.3 27.6 – 6.7 83.5 – 14.9 14.6 – 5.5 1.5 – 2.6 8.9 – 4.4 4.8 – 0.8

2013 40–60 10,902 8.8 1.2 29.2 – 6.8 88.3 – 15.0 13.9 – 5.1 1.6 – 2.9 8.9 – 4.2 5.2 – 1.1
>60 2195 15.1 3.7 29.6 – 6.3 90.3 – 14.3 13.3 – 4.3 1.4 – 2.6 8.7 – 4.1 5.5 – 1.3
<40 20,012 3.0 0.3 27.6 – 6.7 84.4 – 15.3 14.7 – 4.3 1.4 – 2.4 9.5 – 3.8 4.8 – 0.7

2014 40–60 26,049 9.1 0.9 28.9 – 6.6 88.3 – 15.0 13.9 – 3.8 1.3 – 2.6 9.3 – 3.8 5.2 – 1.1
>60 4756 16.1 2.1 28.9 – 6.3 89.9 – 14.6 13.2 – 3.2 1.2 – 2.4 8.8 – 3.7 5.5 – 1.2
<40 14,211 3.2 0.3 27.4 – 6.6 84.1 – 15.2 14.8 – 4.8 1.7 – 2.5 9.6 – 4.3 4.8 – 0.7

2015 40–60 15,934 8.1 0.8 29.0 – 6.6 88.9 – 15.2 14.0 – 4.2 1.7 – 2.9 9.5 – 4.3 5.2 – 1.1
>60 2705 13.5 2.1 29.0 – 6.2 90.4 – 14.2 13.4 – 3.7 1.7 – 3.5 9.3 – 4.2 5.5 – 1.2

Data are expressed as percentage and mean – SD.
SD, standard deviation.

Appendix Table A2. Male Participants (n = 8,399) Self-Reported Diagnoses of Diabetes and Heart

Disease and Measurements of Body Mass Index, Waist Size, Stress, Weekly Alcohol Consumption,

Fasting Plasma Glucose Levels, and Time Spent Inactive

Disease
prevalence

(%)
Average
measure

Year Age N Diabetes
Heart

disease BMI

Waist
size
(cm)

Stress
score

Alcohol
(no./week)

Sedentary
(h/day)

FPG
(mmol/L)

<40 4924 9.9 2.5 29.0 – 5.4 89.7 – 11.3 13.1 – 4.4 3.6 – 6.0 7.2 – 3.6 5.1 – 0.9
2012 40–60 7066 9.3 2.5 29.3 – 5.2 93.9 – 11.7 13.1 – 3.9 3.9 – 6.8 7.2 – 3.4 5.6 – 1.2

>60 1725 9.5 1.9 29.3 – 4.9 95.6 – 11.4 13.1 – 3.4 4.0 – 6.0 7.1 – 3.2 5.9 – 1.4
<40 6232 3.7 0.3 28.3 – 5.5 89.3 – 12.2 14.1 – 4.8 3.3 – 5.0 8.4 – 4.2 5.1 – 0.9

2013 40–60 7315 10.3 2.0 29.4 – 5.3 93.4 – 12.9 13.3 – 4.2 3.2 – 4.5 8.4 – 3.8 5.5 – 1.3
>60 1427 19.2 7.3 29.4 – 5.0 95.3 – 13.0 12.8 – 3.7 3.4 – 6.1 7.6 – 3.6 5.9 – 1.5
<40 16,128 3.7 0.2 28.3 – 5.4 90.8 – 12.8 14.1 – 3.9 3.0 – 4.3 8.9 – 3.6 5.1 – 0.8

2014 40–60 20,065 12.4 1.6 29.3 – 5.2 94.8 – 12.9 13.2 – 3.3 2.7 – 4.4 8.4 – 3.4 5.5 – 1.3
>60 4,180 21.9 5.5 28.9 – 4.9 96.5 – 13.1 12.6 – 2.8 2.6 – 4.1 7.7 – 3.2 5.8 – 1.4
<40 12,844 4.3 0.3 28.3 – 5.5 91.1 – 13.1 14.2 – 4.3 3.3 – 4.7 8.8 – 4.0 5.0 – 0.8

2015 40–60 13,849 12.0 1.7 29.6 – 5.4 96.0 – 13.4 13.3 – 3.6 3.3 – 4.9 8.4 – 3.7 5.5 – 1.3
>60 2644 17.4 6.3 29.3 – 5.0 97.4 – 12.8 12.7 – 2.9 3.3 – 5.1 7.9 – 3.6 5.7 – 1.4

Data are expressed as percentage and mean – SD.
BMI, body mass index.
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