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Abstract

The standard method for calculating reserves for permanently injured worker benefits (indemnity and

medical) is a combination of adjuster-estimated case reserves and reserves for incurred but not reported

claims (IBNR) using a triangle method.  There has been some interest in other reserving methodologies

based on a calculation of future payments for the expected lifetime of the injured worker using a table of

mortality rates.  This method [1]is required by the State of California for estimating future medical

reserves on permanently disabled workers under self-insured plans, using the most recent U.S. Life

Tables as the basis.  We examined the experience of an excess insurance pool using different methods to

determine the appropriateness of the standard table as an estimator of claim termination.  The estimated

pool termination rates were significantly higher than the standard table for most ages.  We also calculated

termination hazard rates using both Kaplan Meier and Cox proportional hazards models and found that

the modelled termination hazard was significantly higher than the standard table mortality rates.  Finally,

because life expectancy is only one component of the State of California reserve formula we cannot

conclude that the formula results in over-reserving for future medical claims.  If this approach is to

continue to be used, a more appropriate method for calculating termination rates should be considered.

Background

Workers’ compensation insurance covers all work-related injuries and illnesses with medical care, wage

replacement, and death benefits. In California private and public employers are required to have workers’

compensation insurance for their employees. Most public entities self-insure their exposures below a Self-

Insured Retention (SIR) and insure their exposure above the SIR through an excess workers’

compensation insurance policy.  The SIR is the amount specified in the insurance policy that must be paid

by the insured before the excess insurance policy will respond to a loss.  Public employers may purchase
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excess insurance through entities such as the California State Association of Counties-Excess Insurance

Authority (CSAC-EIA).

To legally self-insure, employers must comply with the reserving policy of the California Office of Self-

Insured Plans (OSIP).  Reserves are established to cover the future medical costs that are expected for

each claimant including costs associated with expected surgeries, prescription drugs, rehabilitation,

physical therapy, etc. The statutorily established reserving methodology for Permanent Disability (PD)

claims [1] requires that Future Medical (FM) reserves for claimant i at time t be calculated as:
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In this model life expectancy depends only on the age of claimant i and is independent of time t .

Historical medical payments may be adjusted to remove outliers and to include costs for known future

procedures where these are expected to be greater than the historical average. Permanent Disability (PD)

is defined as follows4: Any lasting disability that results in a reduced earning capacity after maximum

medical improvement is reached. Whether a disability is considered partial or total depends on the

Permanent Disability Rating, a percentage that estimates how much a job injury permanently limits the

kinds of work the claimant can do.  A rating of 100% implies permanent total disability; a rating less than

100% implies permanent partial disability.

The OSIP reserving methodology requires that life expectancy be calculated using the most recent U.S.

Life Tables (2011 for our analysis) separately for males and females, which is provided by the

CDC/NCHS National Vital Statistics System (Arias 2015 [2]). The U.S. Life Tables provide mortality

rates at each age for the U.S. population, and allow the derivation of an estimate of future life expectancy

in the usual actuarial way, namely:
0

x t xe p dt


  where xe is the complete expectation of life for an

individual of age x and t xp is the probability that the individual will survive for t years.  (See, for

example, Dickson Hardy & Waters [3].)  Life expectancy is used in this model as a measure of duration

to claim termination.  A workers’ compensation claim may terminate due to death, recovery or

settlement, although the latter two statuses are not common in the case of permanently disabled

claimants.  Because the U.S. Life Tables measure life expectancy for the population as a whole, including

4 From State of California Dept. of Workers Compensation “Glossary of Workers Compensation Terms for Injured
Workers.” http://www.dir.ca.gov/dwc/WCGlossary.htm#p accessed July 2017.
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both healthy and disabled lives, they may not be representative of claims termination rates for PD

claimants.

Prior Use of Survival Models to estimate survival of permanently disabled populations

There are two major strands of research in this area: the workers’ compensation actuarial literature and

the health services literature.  There are a number of health services studies estimating the future lifetimes

of injured workers, for example [4-9].  These studies cover permanently disabled workers in different

countries, industries and injury types.   Cox proportional hazard and Kaplan Meier models are used in

some (but not all) of these studies to compare the mortality hazard with that of a comparison population.

Uniformly, the studies cited found that expected lifetimes of permanently disabled workers are shorter

than those of standard populations.

Workers compensation actuaries frequently estimate future liabilities by some form of chain ladder

projection.  The lack of long duration data makes estimation of costs in “the tail” difficult.  Several

studies have tackled the issue of estimation of tail liability, including [10-14].   This has led Jones et al

[11] to find that “adverse reserve development in older accident years [is] a persistent problem…..

traditional actuarial methods typically used to project “bulk” incurred but not reported reserves often fall

short.”  The authors go on to note that a mortality-based method of reserve setting can help address the

causes of reserve misestimation. Despite some interest in the use of a mortality-based method for

estimating future reserves, there is relatively little literature on this topic. Gillam [15] in a 1993 paper

tested whether injured worker mortality differed from population mortality.  The Gillam study found that

injured worker mortality was higher than population mortality under age 60, but equal between 60 and

74.  The author calculates that the average pension of injured workers will be 1.6% lower than that

calculated using the standard table, at a 6% discount rate.  The author concludes that “higher mortality in

these cases doesn’t make current reserves significantly redundant.”  However, the Gillam study focused

on the indemnity cost (effectively a disabled life pension) rather than the medical cost. Jones et al note

that medical trend is one reason for persistent reserve understatement in recent years. Unfortunately

Jones et al do not compare their reserve estimates based on discounted contingent cash flows with

traditional triangle based estimates, although they list a number of advantages of a mortality-based

method.
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Hypothesis

If mortality of disabled lives is higher than that of the standard population, by using a population life

table rather than a disabled life table the current methodology potentially overstates claimant longevity

as well as the FM Reserves on PD claims.  We tested the null hypothesis stating that termination rates

in the claimant population are equal to the termination rates according to the current U.S. Life Table.

Additionally, we developed a specific disabled termination table based on PD claimant data.  While

another table would be better than the U.S. Life Table if the null hypothesis is rejected, we

demonstrate that the empirical termination table is better-suited for the FM PD reserving calculation.

Because our data includes a number of different variables, we have developed termination rates that

depend on covariates, enabling the workers’ compensation claims adjuster to estimate duration to

termination more accurately for a specific claimant.

Dataset Description

Our dataset was provided by CSAC-EIA (the excess insurance carrier) which accumulates its data

from third-party administrators of workers’ compensation claims as well as its own data. The data

reflected detailed loss calculations for program years 1967/68 through 2015/16, evaluated annually

from June 30, 1999 to June 30, 2016; there was little data prior to 1995.  Although the data was

provided by an excess insurer, all claims were recorded by the excess insurer are on a first dollar basis,

whether or not the claim was a primary claim or an excess claim.  While smaller entities may be more

likely to seek excess insurance, we have no reason to suspect that this selection results in bias in terms

of claimant terminations.   The data included both indemnity and medical claim histories for all claim

types (medical only, temporary partial, temporary total, permanent partial, and permanent total).

Our initial data set consisted of 1,124,473 claim records for 121,110 unique claimants. Each data record

corresponded to a different evaluation year of the claim, so that there were multiple records for each

claimant depending on the date of the initial occurrence, how many years the annual claim evaluations

were performed by an adjuster and when the claim eventually “closed.” The extract date was June 30,

2016.  Claims remaining open at the extract date were considered “censored”.

The original dataset included 126 variables.  Some of these variables were duplicate columns, some had

data quality issues, and many related to indemnity reserving. Table A.1 in the Appendix provides a

summary of 18 variables from the original dataset that we considered for our analysis.



5

Data Processing

In order to perform our survival analysis we processed the dataset to include only those variables that

were necessary for our analysis, as well as creating several derived variables. The data cleaning and

mapping steps are illustrated in Figure 1.

Figure 1: Data Processing Steps

In order to use the data for our PD survival analysis, it was first necessary to identify all PD claims (both

permanent partial and permanent total) and their accompanying claim histories.  Some claims were

identified as temporary disability (TD) while they were undergoing initial evaluation and rating, and later

changed to permanent disability after further examination.  A claim classified initially as TD and later re-

classified as PD was re-classified as PD from inception. There was no single (reliable) variable

indicating that a claim was a permanent disability.  Therefore, we combined several variables from the

original dataset (Claim Type, PD Incurred Flag, and Future Medical Award) to identify PD claims.  This

reduced the number of records from over 1.1 million in the original dataset to 146,208 records and 19,053

unique claims in our analysis dataset.

The quality of the data in the analysis dataset was generally good, aside from three variables: Entity

Group, Body Part and Gender.

 Entity Group: Because of the large number of different occupations we started with a higher level

aggregation of occupations, labelled Entity Group, in order to reduce the dimensionality of the

Identify PD-only claims

PD-only Claims: 19,053

using a combination of fields
PD-only Records: 146,208

Original CSAC-EIA Dataset
Records: 1,124,473

Claims: 121,110
Data fields: 126

Create Derived Variables (Entity Group,
Body Part, Gender, Duration, Severity)

Analysis Dataset
13 Covariates

Eliminate unnecessary data fields

Aggregate data to 1 line per claim
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Occupation variable. However, the Entity Group data field provided with the original data was

found to have many errors in terms of its mapping from the variable Occupation; over 50% of the

occupations were coded as the ‘General Government’ occupation class.  (For example the

occupation ‘Police Officer’ was frequently coded as the ‘General Government’ entity group,

when it should correctly have been coded as ‘Police, Corrections, and Security’ entity group.) We

created our own mapping using keywords found in various occupation descriptions to re-code the

occupations into 15 Entity Groups.

 Body Part: The original data file contained a numeric body part code to describe the body part(s)

involved in the injury, but the field was poorly coded. The original data files had a Body Part

description variable, a Nature of Injury variable, and a Cause of Loss variable which allowed us

to re-map the body part descriptions to the appropriate body part code.

 Gender: The Gender variable had a large percentage of missing values (19%).  We tested the

effect of missing values using a data imputation routine described in the next section.

In addition, we created a new variable to indicate the severity of the injury or illness in terms of the likely

cost of medical treatment.  The new variable, labelled “Severity,” is the average annual claim amount

paid during the duration of the claim. (Note that this definition of Severity is specific to our analysis.

Although similar, it is not the same as the traditional general insurance definition of severity.)  We also

created a new variable “Duration” which is the length of time from Date of Loss (DOL) to Date Closed.

Next, we removed all variables that would not be used in our analysis in order to create our analysis

dataset. This was done for ease of use as well as to improve the organization of our data. The variables in

the analysis dataset are shown in Table 1 below.
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Table 1: Analysis Dataset Summary

Variable Description

Master Claim Number ● Unique alpha-numeric description of each claim
● 19,053 values

Claim Status  Closed (observed; 1) or open (censored; 0) at each evaluation date

Date of Loss (DOL)  Date ranges from 1977 to 2016

Age at DOL  Ages range from 16 to 89

Years Employed at DOL ● Years range from 1 to 62, or <1

Gender Indicator (Derived) ● Specifies whether Gender was imputed or provided in the dataset
● Takes values 1 (Imputed) or 0 (Not Imputed)

Gender ● Male
● Female

Entity Group (Derived) ● 17 Values, e.g. Education, General Government, Fire and Emergency
Services, etc.

Cause of Loss Description ● 17 Values
● Describes cause of injury, e.g., Burn, Fall, etc.

Body Part Description/Code
(Derived)

● 56 values
● Describes where on the body the injury occurred, e.g., Ankle, Brain, etc.

Nature of Injury
Description

● 74 Values
● Describes type of injury, e.g., Concussion, Fracture, Sprain, etc.

Duration (Derived) ● Length of time the claim was open, i.e. the time between DOL and Date
Closed

● Ranges from less than 1 year to 40 years

Severity (Derived) ● Average medical cost per year claim was open
● Defined as Incurred Medical / Duration

Finally, multiple years of claims were merged into a single line per claim.

Data Imputation for Gender

The ‘Gender’ variable contained the values ‘Male,’ ‘Female’ and ‘Unknown/Other.’ We treated the

‘Unknown/Other’ values as missing. We considered two options for handling missing data: delete the

rows with missing gender values, or use imputation methods to predict the gender of the individual. We

found that approximately 19% of the unique claims have the ‘Unknown/Other’ value for gender.

Deleting the claims with missing gender values would significantly reduce our sample size. We therefore

imputed the missing gender values using a logistic regression-based routine in R called MICE
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(Multivariate Imputation by Chained Equations) (See for example Van Buuren and Groothuis-Oudshoorn

[16, 17] and Analytics Vidhya blog [18]). MICE uses observed values to fill in missing values on a

variable-by-variable basis using logistic models for each variable and assuming that the gender values are

MCAR (missing completely at random). It then takes our predictors and data with known gender values

to find the most accurate model for imputing those with missing gender values through a parametric and

stochastic search algorithm. The algorithm imputes incomplete values by generating ‘plausible’ synthetic

values given other columns in the data; each incomplete column has its own specific set of predictors.

The result of running the MICE algorithm is a derived Gender variable.

Methodology

Survival Analysis

In many areas (such as biomedical, engineering, and social science), we are often interested in knowing

duration until an event occurs. Statistical analysis dealing with lifetime data is known as survival analysis.

What makes these lifetime data sets unique and challenging to analyze is the presence of censored

information. Time until failure is not observed for all subjects during the study period, due to the fact that

some subjects may be dropped out or lost to follow up. Our dataset contains right censored data, in which

the event in question occurs at an unknown time after censoring. We also assume that censoring time is

independent of survival time. Some important notation:

 Survival function: ( ) = ( > ), which gives the probability of surviving beyond time t.

 Failure function: ( ) = 1 − ( > ), which is the probability of failing before time t.

 Hazard function: ℎ( ) = ( ) ( ), which is the instantaneous rate of death at time t, given that

the claimant is alive at time t.

 Cumulative hazard function: ( )=∫ ℎ( ) , which gives the cumulative rate of death up to

time t, given that the claimant is alive at time t.

Kaplan-Meier Estimator

Kaplan-Meier is a well-known method to estimate the survival function from given lifetime data. The

overall survival time is divided into small intervals ( it ) by ordering the distinct failure times. Within each

interval, the survival probability is calculated as the number of lives surviving over the number of

observed lives at risk. A simple estimate of Pr( > | ≥ ) is:
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 where jY is the number of subjects alive at time jt and jd are

the number terminating at time jt .

Subjects who have died, dropped out, or who have unobserved survival times are not at risk. Subjects that

are considered as censored are counted in the denominator. Probability of surviving up to any point is

estimated from the cumulative probability of surviving each of the preceding time intervals. A limitation

of this method is that towards the end of the experiment, there are fewer observations, which makes the

estimation less accurate than at the beginning of the study.

Cox Proportional Hazards Model

Cox regression (proportional hazards or PH model) is an extension of regression techniques in survival

analysis that allows us to examine the effect of multiple covariates on the hazard function. It is one of the

most common models applied to survival data because of its flexible choice of covariates and ease of

interpretation, as well as being fairly easy to fit using standard software. Let T be the continuous lifetime

variable and X be a  x 1p vector of fixed covariates. The hazard function for T given X takes the form:ℎ( | ) = ℎ ( ) ( ; )
In the above equation, ℎ ( ) is a baseline hazard function. The Cox regression function does not have any

specific distribution assumption. Instead, ( ; ) is a function of known form which, if taking the natural

logarithm ln( )r , is assumed to be linear with coefficients  defined as ( ; ) = . This

exponential form is convenient and flexible for many purposes allowing, among others, for the hazard

function to have positive values (which is always the case by definition). Notice that no intercept term is

included in .  Instead, it is subsumed in ℎ ( ). The covariates are fixed at inception of the study and

do not vary with time.  Hazards are always positive. The model has two separate components: the

baseline hazard function and the coefficients for covariates. Values of can be estimated using the partial

likelihood method [[19]. However, the proportional hazards and functional form (linear combination of

covariates) are strong assumptions which require careful examination (diagnostics). Extensions of Cox

models, such as a time-dependent model or stratified Cox regression, can be applied in cases where the

PH assumption is violated. The time-dependent model is beyond the scope of this paper. However, we

consider a stratified Cox regression as one of our final models.
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︿

Assume covariates , , … , satisfy the PH assumption while a covariate Z does not. The stratified

Cox model is given by: ℎ( | ) = ℎ ( )
where g=1, …, n are levels within covariate Z. Notice that the set of coefficients for each level is the

same. The only difference is the shape of the baseline function for each level. The stratified Cox model

allows the underlying baseline function to be varied across the levels by incorporating the covariate that

violates the PH assumption into the baseline.

Model Building and Validation Method

We created two different Cox models, one for imputed data and another for non-imputed data. In both

cases, we randomly selected a training set consisting of 70% of observations with the remaining

observations forming the validation set. The metric for model validation is the concordance index (c-

index/c-statistic), which is a generalized version of area under the Receiver Operating Characteristic

curve (ROC curve). The concordance index is equivalent to rank correlation, where rank of predicted risk

using the model for actual low risk observations (risk of experiencing the event) would be small while

rank of predicted risk for high risk observations would be large. Therefore C>0.5 implies good predictive

power, C=0.5 implies predictive power is equivalent to 0, and C<0.5 implies model does a poor job at

prediction.

Actuarial Methods

The 2011 Life Tables provide values of the one-year probability of death
xq from age  to 1x x  . Workers

compensation claims terminate for reasons other than death.  The OSIP methodology requires the use of

the mortality probabilities to estimate the future claim duration, so the xq values represent all terminations,

not just death.  We estimate empirical values of xq from the data as ˆ
0.5( )

x
x

x x

d
q

l w



where:

xd = number of terminations between ages x and 1x  .

xl =  number of claimants aged x

xw = number of claimants terminating during the year for any reason, including claims that are

censored, or still open at the end of the observation period.

In our model  =x xd w
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In order to compare directly the modeling dataset to the 2011 U.S. Life Table we iterated through

every claim and created vectors tracking the number of individuals in the system, the number that were

censored (open) and the number observed (closed) at every age in the range 0 to 100, in order to match the

2011 Table’s range. To determine whether an individual was censored/observed and at which age, we used

the indicator variable, the Age at DOL and the duration of each claim. By adding duration to the Age at

DOL, it could be determined at what age every claim terminates, and by the indicator variable whether

termination was censored or observed. The first array, denoted lx , tracks the number of claims in the

system at every age, with an initial count of 19,053 (the total number of claimants). The other two arrays,

cx and dx respectively, count the number open (censored) and closed (observed) claimants at each age.

With these arrays, it is possible to calculate estimates of ˆxq , given that wx = dx + cx , as defined above.

ˆxq is now an array of probabilities of claim closure for every age from 0 to 100.   Finally we reduced the

age range to 17 to 88 due to the lack of data outside of this range.  The U.S. Life Table exists in both sex-

specific and unisex forms.  Below, we tested the consistency of our estimated ˆxq with both the unisex

table (Figure 2) and sex-distinct tables (Figure 3-4).  It is clear that our estimated ˆxq values diverged from

those of the 2011 Life Table, thus implying that termination rates are higher in our data.  In order to

determine whether this divergence is significant, the 95% confidence interval for each age range was

calculated by using Greenwood’s Approximation which estimates the variance of Kaplan Meier models,

survival models equivalent to our ˆxq values.  In Greenwood’s Approximation,
2

2
2 ˆ ˆ(1 ( 2 )

 

)/

 
x x

x
x

q q

d



 .

This approximation allowed us to calculate the 95% confidence interval for ˆxq as ˆ 1.96x xq  .   In

Figure 2, the lower bound of the confidence interval falls above the 2011 tabular rate at all ages except

the highest (above age 85) at which there are very few observations.

In Figures 3 and 4 we examined the ˆxq values for males and females separately. The results were similar

to those of the unisex table, with the exception that some estimated ˆxq values are less than the tabular

values at very high ages at which there are very few observations.   We concluded that in the age range

35-75 termination rates for both males and females are well in excess of the 2011 tabular rates. We also

performed a one-sided Kolmogorov-Smirnov goodness-of-fit test to test whether the distribution between

the 2011 life table and the estimated ˆxq is identical. Specifically, we compared the empirical distribution

function between two samples given that we do not have an assumption for the distribution of the

samples. We assumed two samples are from the common distribution versus the alternative hypothesis
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that the CDF (cumulative density function) of the estimated ˆxq is greater than the CDF of the 2011 life

table. Because the p-value was less than the level of significance, we rejected the null hypothesis,

confirming our conclusion that termination rates for both males and females are greater than the 2011 life

table rates.

Figure 2: Estimates of and Comparison with 2011 Unisex Life Table (Combined)

Figure 3: Estimates of and Comparison with 2011Life Table (Female)
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Figure 4: Estimates of and Comparison with 2011 Life Table (Male)

Fitted Actuarial Models

Given that the 2011 U.S. Life Table does not represent termination rates of the workers’ compensation

permanently disabled population, the question arises whether we can derive a better model for xq ?

Note that all of the following regression models were tested normally and with two different types of

weights included to represent the number of observations in each age interval. The two methods to

determine the weights were:

Method 1: The weight for each age interval is the proportion of the number of claims within the

corresponding interval to the total number of claims in the data.

Method 2: The weight for each age interval is the inverse of the length of each 95% confidence interval

of the ˆxq estimates.

We incorporated the weights into the regression models due to the observed pattern of heteroscedasticity

(the constant variance in the errors is violated). Specifically, Method 2 allowed us to apply more weight

to the observations with smaller standard errors as these observations carry more information in the data.

In Figure 5 the two methods have different scales.  The younger and older age intervals have relatively

small weights in Method 1.  For Method 2, early ages have higher weights, reflecting the lower variance

at these ages, while higher ages are under-weighted, reflecting their higher variance.
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Figure 5: Weight Distribution

We first fitted a quadratic function because this form appears to fit the observed ˆxq values. The best fit

quadratic model which included the set of weights in Method 2 was 20.0666 0.6289 0.2601ˆxq x x   ,

which was selected via the AIC (Akaike Information Criterion) model selection method. AIC is found by

computing ˆ ˆ2 2ln , where  is the Maximum Likelihood functionk L L and k is the number of free

parameters to be estimated.

Next we considered fitting the Gompertz model, which is one of the most commonly used parametric

survival distributions to model human mortality. The Gompertz model assumes that the hazard rates are

exponentially distributed where the hazard rates are analogous to the life table values qx and are some

parametric function of age (MacDonald, Richards, and Currie, [20]). In the Gompertz model the hazard

rate function, μx , generally has the following form: μx = eα+βx , where x denotes age of individual,

and  and  are relatedx xq
1

0

as follows: x s x x sq p ds   .

In this formula, the two parameters represent an age-dependent (β) and age-independent component (α).

The log transformation of this hazard rate function is a linear function x  .  We estimated the

parameters of the Gompertz model by performing linear regression on the log transformation of the
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ˆ ' .xq s The diagnostic plots of the log transformation for normality confirmed that we could proceed with

the linear regression. To select the best Gompertz model, we first computed the lognormal log-likelihood

for the log-transformed response, then calculated the AIC value. The resulting Gompertz model has the

following form: 6.9188 0.0782ˆ x
xq e  , using the set of weights in Method 1.

Table 2: AIC Values of Fitted Models Using Different Weights

AIC value Method 1 Method 2

Quadratic Model -403 -465.1

Gompertz Model -296.9 -209.1

The chosen Gompertz and quadratic models are shown in Figure 6, compared with the observed values

for xq . The age range on the x-axis is determined empirically based on available data (ages 16 to 88).

The y-axis contains the ˆxq estimates, or the probability of claim closure for a given age, x . Both the

Gompertz and quadratic models fit the data reasonably well up to age 60; thereafter, the Gompertz model

significantly over-estimates termination as does the quadratic model above age 70.

Figure 6: Gompertz and Quadratic Models Vs. Observed Values
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The Cox model applied to imputed data

New Grouping of Entity, Cause of Loss, and Body Parts

Several covariates such as Entity Groups, Cause of Loss, and Body Parts are categorical with many

levels. For example, the Body Parts variable contains 56 values that indicate the location of the injury.

While the translation of the Body Part description into numeric values is convenient for coding purposes,

Body Part is a nominal variable where levels do not have any natural order. A drawback of fitting Cox

regression is model complexity: each covariate level costs a degree of freedom to estimate, whereas a

majority of these levels are not significant. We therefore required a method to simplify the multi-level

variables to a smaller number of groups.  We applied the Kaplan Meier (KM) approach to re-group levels

based on median survival time. We first applied KM to estimate the survival function to obtain median

survival time. Second, we ranked median survival times in increasing order and re-group the original

levels into four different groups. We then repeated this procedure for Entity, Cause of Loss, and Body

Parts. Table 3 below shows the new grouping of the Entity variable. (See Appendix A2 for groupings of

the Cause of Loss and Body Parts variables).

Table 3: Grouping of Entity Variable

Original levels Median survival

time using KM

Updated levels using KM

(1) Agriculture and farming 3.564 Group 1:

(2), (13), (14), (15)(2) Animal and vector control 3.351

(3) Community services 4.107

(4) Construction and building services 4.559

(5) Education 4.507 Group 2:

(1), (10), (12)(6) Fire and emergency services 5.279

(7) General government 4.348

(8) Health and medical services 4.205

(9) Police, corrections, and security 4.425 Group 3:

(3), (7), (8), (11)(10) Recreation and resource protection 3.800

(11) Sanitation and waste collection 4.332

(12) Transportation and transit 3.797

(13) Unknown/Other group 2.830 Group 4:

(4), (5), (6), (9)(14) Utilities and power 3.479

(15) Water and water conservation 3.512
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The new grouping is based on the application of the KM method to the training set; we then applied the

same groupings to the test set.

Stratified Cox Model

The final model contains two interaction terms: interaction between Sex and Age at DOL, and between

Body Parts and Cause of Loss. The Entity Group covariate did not satisfy the PH assumption, and we

therefore created stratified Cox models for the different levels of Entity.

Table 4: Stratified Cox Model on Imputed Data

Covariates Coeff. Hazard Ratio Std. Error P-value 95% CI of HR
Age at DOL -0.007 0.993 0.01 0.000 0.990, 0.996

Body 2 (vs. 1) -0.125 0.882 0.190 0.510 0.608, 1.281
Body 3 (vs. 1) -0.572 0.565 0.191 0.003 0.389, 0.820
Body 4 (vs. 1) -0.605 0.546 0.245 0.014 0.338, 0.883

Cause loss 2 (vs. 1) 0.040 1.041 0.147 0.786 0.781, 1.388
Cause loss 3 (vs. 1) -0.420 0.657 0.362 0.247 0.323, 1.337
Cause loss 4 (vs. 1) -0.231 0.794 0.149 0.121 0.593, 1.063

Severity 0.000 1.000 0.000 0.000 1.000, 1.000
Sex -0.542 0.581 0.098 0.000 0.480, 0.704

Years employed -0.008 0.992 0.001 0.000 0.989, 0.995
Age at DOL: Sex 0.010 1.010 0.002 0.000 1.006, 1.015

Body 2: Cause loss 2 -0.308 0.735 0.199 0.123 0.498, 1.087
Body 3: Cause loss 2 -0.087 0.917 0.197 0.658 0.623, 1.348
Body 4: Cause loss 2 -0.325 0.723 0.251 0.195 0.442, 1.181
Body 2: Cause loss 3 0.352 1.422 0.423 0.405 0.621, 3.256
Body 3: Cause loss 3 0.528 1.695 0.402 0.189 0.771, 3.730
Body 4: Cause loss 3 0.234 1.264 0.435 0.590 0.539, 2.962
Body 2: Cause loss 4 -0.079 0.924 0.197 0.689 0.628, 1.360
Body 3: Cause loss 4 0.111 1.117 0.197 0.573 0.760, 1.642
Body 4: Cause loss 4 -0.061 0.940 0.251 0.807 0.575, 1.538

The functional form of the stratified Cox model is:
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Figure 7 shows the shapes of the baseline hazard functions for each entity group. The shapes of the

cumulative baseline hazard functions for the entity levels are not always parallel; in particular the group 2

function crosses group 1, violating the PH assumption. Three different tests, the likelihood ratio test,

Wald’s test, and log-rank test are conducted to test the global hypothesis that = (overall goodness-of-

fit). As p-values for all three tests are close to 0, we reject the null hypothesis, indicating that the model is

an appropriate fit for the data set.

Figure 7: Baseline Cumulative Hazard Function for Each Level of Entity

Model Interpretation

Coefficients of the Cox model are related to the hazard rate. For example, the coefficient value of -0.008

for Years Employed at DOL indicates that the log hazard ratio increases by a unit of -0.008 for each

additional unit increase in years of employment while other variables are kept constant. In practice, it is

more meaningful to interpret the result using hazard ratio (or relative risk) instead of log hazard ratio.

The hazard ratio is obtained by taking the exponential of the coefficient. Specifically, the hazard ratio of

years employed is ( 0.008) 0.992,e   indicating that for each additional unit increase in duration of

employment while holding other variables constant, the hazard ratio increases by a factor of 0.992. In

other words, the risk of claim termination decreases by 1% for each yearly increase in number of years

employed.
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The final model contained two significant interaction terms: interaction between Sex and Age at DOL

(categorical vs. continuous) and interaction between Body Parts and Cause of Loss (two categorical

variables). When interaction terms are significant, the interpretation of the coefficients becomes much

more complex. For example, interpretation of “Sex and Age at DOL” is not as simple as Years Employed.

The significant interaction between Sex and Age at DOL implies that the effect of DOL on the survival

rate varies for each sex (male and female). Specifically, for each unit increase in age at DOL for a male

claim, the hazard ratio increases by a factor of 1.010.

Model Diagnostics

We tested the validity of the assumptions made in the model with model diagnostics.

(a) Overall fit

Cox-Snell residuals, defined as = ( ) can be used to assess the overall fit of our Cox

Proportional Hazards model. If the model is correct, a plot of the residuals of the estimated cumulative

hazard rates ( ) versus should follow a straight line through the origin. In Figure 8 below, we see

the estimated cumulative hazard is close to the diagonal line for all but large values of Cox-Snell

residuals.

Figure 8: Cumulative Hazard vs. Cox-Snell Residuals for Overall Fit

Overall, the model fits the data well as the proportion of the observations in the early range [0,4] of Cox-

Snell residuals is approximately 99.8% of the whole training set. The departure of the estimated
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cumulative hazard as Cox-Snell residuals get larger indicates the presence of the potential outliers in the

data.

(b) Appropriateness of the proportional hazard assumption

The departure from proportionality could lead to an incorrect model. We examined the PH assumption in

two ways: by plotting the Schoenfeld residuals and performing a formal hypothesis test for correlation

between Schoenfeld residuals and time.

If the PH assumption is true, we should expect that the trend of ( ) versus time to be a horizontal line

for each covariate. As we see in Figures 9.1 and 9.2 below, the pattern of each plot looks horizontal

around zero with little violation, implying that the PH assumption is valid.

Figure 9.1: Schoenfeld Residuals vs Time
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Figure 9.2: Schoenfeld Residuals vs. Time (cont’d)

To examine PH assumption more carefully, we performed a hypothesis test which Grambsch and

Therneau proposed[21]. Each parameter in the model is allowed to depend on time

(i.e., ( ) = + ( )). We tested the value of the correlation parameter j ; if = 0 we would

reject the hypothesis that parameters are time-dependent. We conducted this test using function cox.zph

in R and observed that all p-values are not significant (Table 5). In summary, we did not have sufficient

evidence to reject the null hypothesis that the PH assumption is valid.

Table 5: PH Assumption Hypothesis Test Results

Covariates p-value for hypothesis test

Age at DOL 0.662

Body 2 0.824

Body 3 0.450

Body 4 0.185

Cause of loss 2 0.634

Cause of loss 3 0.921

Cause of loss 4 0.357

Severity 0.343

Sex 0.651

Years of employment (at DOL) 0.549

Age at DOL:Sex 0.841
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Body 2: Cause of loss 2 0.751

Body 3: Cause of loss 2 0.724

Body 4: Cause of loss 2 0.250

Body 2: Cause of loss 3 0.929

Body 3: Cause of loss 3 0.527

Body 4: Cause of loss 3 0.644

Body 2: Cause of loss 4 0.834

Body 3: Cause of loss 4 0.614

Body 4: Cause of loss 4 0.315

(c) Linear form of covariates

We further examined whether the linear combination of covariates is the best functional form to describe

the effect of the covariates on survival. To do this, we plotted the martingale residuals versus each

covariate. The results in Figure 10 implied that we did not need any polynomials or transformation of the

covariates.

Figure 10: Martingale Residuals vs. Covariate
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(d) Outliers and influential points

We examined the accuracy of the model for predicting the survival of a given subject. In other words, we

tried to find claims whose survival time differed significantly in comparison to their model predictions.

The deviance residuals plot versus risk scores is helpful to detect which claims are potential outliers,

which perhaps should be excluded from the analysis. In Figure 11, we observe that the deviance residuals

are randomly scattered in the panel and some observations (marked as triangles with indices) are the

detected potential outliers. We performed further sensitivity analysis by removing these outliers and

refitting the model. The new fitted model is not far-off from the model presented in Table 3 and

predictive power for both models using c-index is similar.

Figure 11: Deviance Residuals vs. Risk Scores

We also examined the influence of each claim on the model fit. The scaled score statistics versus

covariate plot allows us to find influence points. Figure 12.1 and 12.2 show score residuals for each

covariate. Using the plot between severity and the scaled score statistics, we observed several points that

were further away from the majority of the observations, although this distance does not appear to be

significant. suggesting that these points may be exercising influence on the fit.
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Figure 12.1: Scaled Residuals vs. Covariate

Figure 12.2: Scaled Residuals vs. Covariate (Cont’d)



25

Model Prediction

We applied the final Cox model to the test set and calculated the concordance index. A C-index of 0.58

indicates the model does a moderately good job at predicting the risk of the claim being terminated.

Results of Cox Model on Non-Imputed Data

We will not repeat specific details for this section as all the procedures are similar to imputed data. Table

7 below presents the final form of the Cox model on the non-imputed data. It contains three interaction

terms: between Sex and Age at DOL, between Entity Group and Sex, and between Body Parts and Cause

of Loss. When applied to the test dataset, the C-index of 0.57 indicates that model does a good job at

predicting the risk of the claim being terminated.

Table 7: Final Cox Model on Non-imputed Data

Covariates Coeff. HR Std. Errors P-value 95% CI of HR

Entity 2 -0.206 0.814 0.123 0.094 0.6400, 1.0358

Entity 3 -0.526 0.591 0.104 0.000 0.4817, 0.7253

Entity 4 -0.600 0.549 0.107 0.000 0.4451, 0.6772

Age at DOL 0.003 1.003 0.002 0.062 0.9998, 1.0069

Body 2 -0.581 0.560 0.140 0.000 0.4255, 0.7359

Body 3 -0.603 0.547 0.207 0.004 0.3649, 0.8204

Body 4 -0.874 0.417 0.165 0.000 0.3020, 0.5766

Cause loss 2 -0.610 0.543 0.165 0.000 0.3931, 0.7506

Cause loss 3 -0.461 0.630 0.119 0.000 0.4992, 0.7961

Cause loss 4 -0.282 0.754 0.102 0.006 0.6173, 0.9216

Severity 0.000 1.000 0.000 0.000 1.0002, 1.0002

Sex male 0.291 1.337 0.163 0.075 0.9711, 1.8421

Years employment -0.006 0.994 0.001 0.000 0.9913, 0.9971

Severity: Sex male -0.012 0.988 0.002 0.000 0.9833, 0.9921

Entity 2: Sex male 0.280 1.324 0.155 0.070 0.9777, 1.7918

Entity 3: Sex male 0.416 1.515 0.130 0.001 1.1750, 1.9537

Entity 4: Sex male 0.298 1.348 0.132 0.023 1.0412, 1.7444

Body 2: Cause loss 2 0.672 1.958 0.216 0.002 1.2825, 2.9902

Body 3: Cause loss 2 0.539 1.714 0.299 0.071 0.9543, 3.0787
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Body 4: Cause loss 2 0.417 1.517 0.243 0.087 0.9413, 2.4440

Body 2: Cause loss 3 0.401 1.493 0.162 0.013 1.0875, 2.0489

Body 3: Cause loss 3 0.255 1.291 0.226 0.259 0.8284, 2.0120

Body 4: Cause loss 3 0.394 1.482 0.183 0.032 1.0354, 2.1223

Body 2: Cause loss 4 0.247 1.281 0.145 0.088 0.9637, 1.7020

Body 3: Cause loss 4 0.058 1.060 0.212 0.784 0.6997, 1.6054

Body 4: Cause loss 5 0.117 1.125 0.170 0.490 0.8062, 1.5685

Discussion

Workers’ compensation reserves for future medical liabilities are usually calculated in bulk using a

triangle method.  Although this standard method is widely-used, there are examples of studies using

reserving methods based on mortality projections, recognizing that explicit incorporation of injured

worker mortality may reduce the potential inaccuracy in the bulk reserves.  The State of California

requires an explicit calculation for each permanently injured worker, assuming that termination of the

claim follows the most recent U.S. Life Table.  The literature shows that injured worker mortality is

higher than that of the overall population, which could lead to over-reserving of future medical liabilities.

We examined claims termination rates of injured workers using the experience of the California

Association of Counties-Excess Insurance Authority (CSAC-EIA). We applied a number of different

methods, including direct calculation of the termination rates ( ˆxq ) (both raw and fitted to polynomials) to

compare with the tabular rates, and found that for most ages, termination rates are in excess of those

implied by the tabular rates.  Finally, we applied Cox Proportional Hazards modeling to develop

termination hazard rates based on our dataset.  The Cox PH model is powerful in that it allows us to

incorporate covariates and to assess the influence of individual covariates on the termination hazard.

Tests of the proportional hazard assumptions show that the Cox model fits the data well, and that we can

have confidence in the derived model.

Conclusion

Analysis of the CSAC-EIA data shows that the use of the standard population mortality table as the basis

for permanent disability claim projections may be inappropriate because the table over-estimates injured

worker survival. However, it is important to remember that the life expectancy of the injured worker is

only one component of the reserve calculation; the other component is the average 3-year cost of medical

claims.  Because the claims cost component excludes a provision for medical trend, it may underestimate

the future medical cost component.   The result of combining an over-estimate of survival with an
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underestimate of future medical costs may well result in reasonable reserves in total; however, if the

intention is to produce accurate reserves for future medical claims, more accurate methods of estimating

both life expectancy and future medical claims would be appropriate.

Limitations

This study was performed on the experience of one pool, incorporating a number of different third-party

administrators.  Changes in reporting requirements and administrators over time may affect the accuracy

of the data.  As noted in our conclusion, life expectancy is only one component of the reserving

calculation and reserves calculated according to the State of California methodology may be appropriate

because different components of the calculation offset each other.
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Appendix 1:  Data Summary

Table A.1: Original Variables

Variable Description

Original Excel # The row number in original dataset  (1,124,473 rows total)

Gender ● Female
● Male
● Unknown/Blank

Master Claim Number ● Unique alpha-numeric description of each claim
● 121,110 values

Claim Type ● Dupe/Delete
● First Aid
● Future Medical
● Indemnity
● Info Only
● Medical Only
● Other
● Temporary Disability

Date of Loss (DOL) ● Dates range from 1967 to 2016
● 3.5% of records relate to accident years 1994 & prior

Age at DOL ● Ages range from 1 to 97
● Missing Values (fewer than 2%)

Claim Status at 6-30-2016 ● Open
● Closed
● ReOpened-Closed
● Blank

Occupation ● 2,624 occupational descriptions
● e.g. Firefighter, Teacher, Accountant, Electrician

Entity Group ● 17 Departments e.g. Education, General Government, Fire and Emergency
Services, etc.

Date Closed ● Date ranges from 8/1/77 to 6/30/2016

Average Weekly Wages ● Ranges from $0.00 to $33,446.40
● Missing Values (over 50% of data)

Nature of Injury Description/Code ● 74 values, e.g. Sprain, Fracture, Hearing Loss, Concussion, etc.

Future Medical Award ● TRUE or FALSE

PD Incurred Flag ● TRUE or FALSE

Incurred Medical ● Incurred Medical = Total dollar amounts of medical payments paid
plus reserves for future medical costs

Incurred PD ● Numeric values ranging from $0.30 to $1.8 million
● Incurred PD = Paid PD + Reserved PD
● Refers to indemnity benefits (paid to worker to compensate for

lost wages) on PD claims, not medical benefits

Years Employed at DOL  Years range from 1 to 62, or <1
 Missing values (approx 4.5%)

Cause of Loss Description/Code  143 values, e.g., Animal or Insect Bite, Broken Glass, Burn, Fall, etc.

Body Part Description/Code  69 values, e.g., Abdomen, Ankle, Brain, Buttocks, Chest, etc.
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Table A.2: New Grouping of Cause of Loss in Imputed Data

Original level Median survival time using
KM

New grouping

(1) CL1: Absorption, ingestion, or inhalation 4.211 Group 1:
(5), (12), (14), (15)(2) CL2: Animal or insect 4.893

(3) CL3: Burn 4.192
(4) CL4: Caught 3.493
(5) CL5: Cut 3.455 Group 2:

(4), (8), (10), (11)(6) CL6: Explosion or flare back 5.178
(7) CL7: Fall 4.274
(8) CL8: Fellow worker, patient, or other person 3.597
(9) CL9: Machine or tool 4.181 Group 3:

(1), (3), (9)(10) CL10: Miscellaneous 4.090
(11) CL11: Motor vehicle 3.978
(12) CL12: Natural disasters 1.268
(13) CL13: Person in act of a crime 4.274 Group 4:

(2), (6), (7), (13),
(16), (17)

(14) CL14: Rubbed 2.745
(15) CL15: Slipped 3.332
(16) CL16: Strain 4.474
(17) CL17: Strike 4.356
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Table A.3: New Grouping of Body Parts in Imputed Data

Original level (description with numeric code) Median survival time using KM New grouping

(1) other -9 3.074 Group 1:

(9), (12), (14), (16), (24), (36),

(37), (52), (54), (58), (62), (64),

(66), (99).

(2) multiple head injury -10 5.063

(3) skull -11 3.816

(4) brain -12 2.773

(5) ear(s) -13 5.132

(6) eye(s) -14 2.964

(7) nose -15 5.267

(8) teeth -16 1.996

(9) mouth -17 3.830

(10) other facial soft tissue -18 5.405

(11) facial bones -19 9.266

(12) multiple neck injury -20 4.668

(13) vertebrae -21 4.600

(14) disk (neck) -22 5.458

(15) spinal cord -23 4.429 Group 2:

(11), (17), (31), (32), (33), (35),

(38), (39), (44), (46), (55), (56),

(61), (65), (11), (17), (31), (32),

(33), (35), (38), (39), (44), (46),

(55), (56), (61), (65).

(16) larynx -24 1.956

(17) soft tissue neck -25 5.044

(18) multiple upper extremities -30 4.375

(19) upper arm incl. clavicle and scapula -31 3.644

(20) elbow -32 3.438

(21) lower arm -33 3.658

(22) wrist -34 4.274

(23) hand -35 4.060

(24) finger(s) -36 2.803

(25) thumb -37 3.096

(26) shoulder(s) -38 3.929

(27) wrist(s) and hand(s) -39 4.195

(28) multiple trunk -40 4.532

(29) upper back area -41 5.219 Group 3:

(20), (21), (23), (30), (34), (40),

(42), (45),

(48), (50), (51), (53), (57), (91).

(30) lower back area -42 4.877

(31) disc trunk -43 5.266

(32) chest -44 3.534

(33) sacrum and coccyx -45 4.359

(34) pelvis -46 3.868

(35) spinal cord -47 6.888

(36) internal organs -48 4.753

(37) heart -49 8.932
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(38) multiple lower extremities -50 4.348

(39) hip -51 4.932

(40) upper hip -52 3.066

(41) knee -53 4.249

(42) lower hip -54 2.921

(43) ankle -55 3.501 Group 4:

(10), (13), (15), (18), (19), (22),

(25), (41), (43), (47), (49), (60),

(63), (90).

(44) foot -56 3.674

(45) toe(s) -57 4.258

(46) great toe -58 1.508

(47) lung -60 5.501

(48) abdomen incl. groin -61 3.321

(49) buttocks -62 2.992

(50) lumbar and/or sacral vertebrae -63 5.638

(51) artificial appliances (braces, etc.) -64 2.452

(52) insufficient info to identify/unclass -65 4.085

(53) no physical injury -66 2.721

(54) multiple body parts -90 5.227

(55) body system and mult. body systems -91 4.611

(56) whole body -99 2.978


