A Few Myths in Quantitative Finance

Bruno Dupire
Head of Quantitative Research
Bloomberg L.P.

In the honor of JP Fouque
UCSB, Santa Barbara, September 27, 2014
Outline

I. Data
II. Models
III. Hedging
IV. Behavioral Finance
V. Social Utility
I. Statistics/Historical Data
Sharpe ratio myth:
“High Sharpe ratios are rare”
Sharpe ratio myth: “High Sharpe ratios are rare”

- Sharpe ratio > 1 is good, > 2 is exceptional (?)
- Example of a strategy over 1 year
 - with a Sharpe ratio > 3
 - no losing month
Just go long SPX in 1995!
Jump myth:
“Jumps are mostly downwards”
Are big moves really down?

Two moves of more than 10%, both up!
Close up

Two moves of more than 10%, both up!
Biggest historical returns

Over the last 100 years, top 10 returns, 8 out of 10 up!

<table>
<thead>
<tr>
<th>Dates</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/28/1929</td>
<td>-12.94%</td>
</tr>
<tr>
<td>10/30/1929</td>
<td>12.53%</td>
</tr>
<tr>
<td>06/22/1931</td>
<td>10.51%</td>
</tr>
<tr>
<td>10/06/1931</td>
<td>12.36%</td>
</tr>
<tr>
<td>09/21/1932</td>
<td>11.81%</td>
</tr>
<tr>
<td>03/15/1933</td>
<td>16.61%</td>
</tr>
<tr>
<td>09/05/1939</td>
<td>11.86%</td>
</tr>
<tr>
<td>10/19/1987</td>
<td>-20.47%</td>
</tr>
<tr>
<td>10/13/2008</td>
<td>11.58%</td>
</tr>
<tr>
<td>10/28/2008</td>
<td>10.79%</td>
</tr>
</tbody>
</table>
Other jump myth:
“Jumps are well modeled by Levy processes”
Other jump myth:
“Jumps are well modeled by Levy processes”

- Pitfalls of Levy modeling:
 - Back to normal just after a jump
 - No time clustering of jumps
 - Skew vanishes fast
 - Hawkes processes cluster jumps
Dividend myth:
“Dividends yields are quite stable”
Common dividend modelling

- Known amount on the short term
- Proportionality to the stock price on the long term
Coca Cola example
Properties of dividends curves

- Most of the time non decreasing

- Requires path dependent models to account for crisis impact
Correlation myth: “Highly correlated assets are proxies”
Correlation myth: “Highly correlated assets are proxies”

X and Y are 2 stocks of same volatility: \(\sigma \)

Very highly correlated: \(\rho(X, Y) = 0.99 \)

Are they almost perfect substitutes? \textbf{NO}

\[
\sigma^2_{X-Y} = \sigma^2 + \sigma^2 - 2\rho\sigma^2 \\
\sigma_{X-Y} = \sigma \sqrt{2(1-\rho)} \approx 0.14\sigma
\]

The risk of \(X - Y \) is still 14% of the initial risk!
Correlating levels/increments

\[X_t = S&P_t, \quad Y_t = S&P_{t+\delta t} \]

Levels very correlated
Increments decorrelated

\[X_t = S&P_t, \quad Y_t = X_t + \alpha t \]

Levels weakly correlated
Increments fully correlated
Correlation/Causation

- Correlation of A and B is a (linear) measure of co-occurrence
- It may miss a real link between A and B
Skewness myth:
“The skew comes from the skewness of returns”
Dissociating Jump & Leverage effects

\[t_0 \quad \quad \quad t_1 \quad \quad \quad t_2 \]

\[x = S_{t1} - S_{t0} \quad y = S_{t2} - S_{t1} \]

- **Variance:**
 \[(x + y)^2 = x^2 + 2xy + y^2 \]
 - Option prices
 - FWDD variance
 - Δ Hedge

- **Skewness:**
 \[(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \]
 - Option prices
 - Leverage
 - Δ Hedge
 - FWDD skewness
Define a time window to calculate effects from jumps and Leverage. For example, take close prices for 3 months

- **Jump:**
 \[
 \sum_{i} \left(\delta S_{t_i} \right)^3
 \]

- **Leverage:**
 \[
 \sum_{i} \left(S_{t_i} - S_{t_1} \right) \left(\delta S_{t_i} \right)^2
 \]
Skew comes from leverage
Other skewness myth: “Skewness is easy to estimate”
Other skewness myth: “Skewness is easy to estimate”

- Most samples are below the mean
- Empirical mean is most of the time below the expectation
- Binomial and lognormal martingales examples:
Kurtosis myth:
“Returns high kurtosis are due to jumps”
Kurtosis myth:
“Returns high kurtosis are due to jumps”

- Stock returns are leptokurtic (fat tails)
- Are the fat tails due to changes of volatility or to jumps?
S&P 500 Returns 2001-2014

Kurtosis: 11.7
S&P 500 Volatility Normalized Returns

SPX Index Normalized Returns Chart from 2001-01-02 to 2013-12-31

Histogram of normalized daily returns

Kurtosis: 4.8
S&P 500 Returns May 2008 - May 2010

Kurtosis: 7.85
S&P 500 Volatility Normalized Returns

SPX Index Normalized Returns Chart from 2008-04-29 to 2010-04-30

Histogram of normalized daily returns

Kurtosis: 3.41
II. Models
Calibration myth:
“A calibrated model prices well”
Calibration myth:
“A calibrated model prices well”

- Bad implied dynamics
- Example: Heston has overblown volvol,
- Due to volvol*correlation as only way to produce skew
- As a consequence, Feller condition is violated and volatility reaches 0
Heston model:

\[dv_t = \kappa (\theta - v_t) \, dt + \omega \sqrt{v_t} \, dW_t \]

Calibrated to S&P on July 17th 2014:

\[\kappa = 2.09 \]
\[\theta = 0.043 \]
\[v_0 = 0.01 \]
\[\omega = 59.8\% \]
SABR myth: “SABR manages smile risk”
SABR myth:
“SABR manages smile risk”

- Backbone: behavior of ATM vol as a function of spot
- Model claims to dissociate fitting to the skew from fitting to the backbone
- Managing Smile Risk: NO
2 fitting models

- **SABR A**
 \[
 \begin{align*}
 dF &= \alpha \cdot dW \\
 d\alpha &= \nu \alpha \cdot dZ
 \end{align*}
 \]

- **SABR B** calibrated to A
 \[
 \begin{align*}
 dF &= \alpha' F \cdot dW \\
 d\alpha' &= \nu' \alpha' \cdot dZ
 \end{align*}
 \]

Same skew

Different backbones

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>ν</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.1</td>
<td>1</td>
<td>0.175</td>
<td>-0.58</td>
</tr>
</tbody>
</table>
\[\sigma_{ATM}^{F_{T_1}, T_2} \]

- Scattered plot
- Average backbone

Same skew \Rightarrow similar vol dynamics\text{ in average } = \text{ LVM vol dynamics}
Interest rate myth:
“Many factors are needed”
Interest rate myth: “Many factors are needed”

- Analysis of interest rate data
- PCA of the yield curve
- Mean reversion?
- Need for tools to analyze the data and conditional behavior
- Few dimensions with conditioning preferable to many blind ones

- US rates PCA pre and post crisis
PCA pre crisis
PCA post crisis
Arbitrage Pricing Theory myth
“APT is a multi-factor model”
Arbitrage Pricing Theory myth
“APT is a multi-factor model”

- Assume the factors are tradable

- NP = Numeraire Portfolio, associated to measure “P”

- No risk premium for the noise => NP is in the space spanned by the factors

- The factors’ risk premia locate NP in this space

- Reduces to 1 factor! NP plays the role of the Market Portfolio in the CAPM
\[X = \Sigma \beta_i F_i + \varepsilon \implies RP_X = \Sigma \beta_i RP_{F_i} \]

\[
NP = \Sigma \alpha_i F_i, \quad \alpha = V^{-1} RP_F \\
RP_X = \frac{CoV(r_X, r_{NP})}{Var[r_{NP}]} \\
RP_{NP} = CoV(r_X, r_{NP}) = \Sigma \beta_i RP_{F_i}
\]
Volatility spike myth
“Volatility jumps up during a crash”

VIX “Jumps” are more like explosive rallies which extend over a few days
III. Hedging
Calibration myth: “Calibrate and price”
Calibration myth: “Calibrate and price”

- Calibration without a hedge is pointless
- Examples:
 - droption
 - spread option
 - albatross
 - variance swap adjustment
H2

- Need to measure the “hedgeability” of a claim
Risk management myth:
“Cancel the Greeks to cancel the risk”
Risk management myth: “Cancel the Greeks to cancel the risk”

- Greeks culture: cancel a scalar sensitivity
- Depends on what is perturbed
- Match a risk profile (a shape) instead

- Superbucket analysis with Functional Ito Calculus
Asian Option Hedge

Robust volatility hedge with \(PF = \int\int \alpha(K,T) C_{K,T} \, dK \, dT \)

\[
\alpha(K,T) = -\left(\frac{\partial h(K,T)}{\partial t} + \frac{1}{2} \frac{\partial^2 (v_0(K,T) h(K,T))}{\partial x^2} \right)
\]

\(h \) is the conditional expectation of the functional Gamma
IV. Behavioral Finance
Risk neutrality myth:
“Risk neutrality is a psychological attitude wrt risk”
Risk neutrality myth:
“Risk neutrality is a psychological attitude wrt risk”

- Risk neutrality: carelessness about uncertainty?

\[1 \text{ A} \text{ gives either } 2 \text{ B} \text{ or } 0.5 \text{ B} \Leftrightarrow 1.25 \text{ B} \]

\[1 \text{ B} \text{ gives either } 0.5 \text{ A} \text{ or } 2 \text{ A} \Leftrightarrow 1.25 \text{ A} \]

- Cannot be RN wrt 2 numeraires with the same probability

\[\text{Sun: } 1 \text{ Apple} = 2 \text{ Bananas} \]
\[50\% \]
\[\text{Rain: } 1 \text{ Banana} = 2 \text{ Apples} \]
\[50\% \]
Behavioral finance myth
“BF is cute but useless”
Behavioral finance myth
“BF is cute but useless”

Many relevant themes:

- Anchoring
- Framing
- Endowment effect
- Distortion of small probabilities
- Disposition effect
- Overconfidence

For option pricing, regret aversion is central
Regret Aversion

- Real motive for buying derivatives
- Decisions are taken to minimize regret, not to maximize utility
Regret Aversion

- You receive an Apple share as a gift. As you have no view in Apple, you sell it at market value, say $400.
One month later it moves to a) $500 or b) $300. Which case makes you happier?
Regret Aversion

- You receive an Apple share as a gift. As you have no view in Apple, you sell it at market value, say $400. One month later it moves to a) $500 or b) $300. Which case makes you happier?

- Probably b) as it makes you feel smart
- Case a) generates regret
- The desire to capture opportunities may make you overpay for optionality
Initial Position

[Graph showing a linear relationship between price and some variable, marked with a point at $400.]
Hedged Position

![Graph showing a hedged position with a sell point at $400.]
Regret Aversion
Regret Aversion

- Regret aversion creates demand for convexity

 Pushes option prices up

- Explains partly volatility risk premium
Toy Model

- Utility depends not only on wealth but also on regret
- Simple utility function:
 \[R(X,H) = U(X+H) + V(H) \]
 \[= -\exp(-.1(X+H) - .8 \exp(-.1H)) \]

X: initial exposure
H: hedge
Hedge when exposure $X(S) = S - S_0$
Impact on the skew
V. Social Utility
High frequency trading myth: “High frequency trading provides liquidity”
High frequency trading myth: “High frequency trading provides liquidity”

- The “providing liquidity” argument
- Exploit information: fast front running
- Provoke a situation:
 - placing fake orders
 - punching through liquidity holes to force trades from VWAP replicators

- Reward of market makers:
 - Should be for risk taking (inventory risk)
 - Not for private information
Derivatives/Innovation myth: “Derivatives reduce risk”
Derivatives/Innovation myth: “Derivatives reduce risk”

- Are derivatives solving the client’s problem or the bank’s problem?
- Derivatives should reduce client’s risk
- Instead they often used to
 - Express a view
 - Avert regret
- They are “80% bought and 20% sold”
- Portuguese railroad example
Euribor 3m 2000-2007
Coupons

Receive: 4.76%

Pay: 1.76% + Spread

Spread = Max[0, Previous Spread + 2*Max(2%-Euribor,0) + 2*Max(Euribor-6%,0) – Digital Coupon]

Digital Coupon = 0.50% if 2% < Euribor < 6%; 0% otherwise
Realized path

Table:

<table>
<thead>
<tr>
<th>Notional</th>
<th>Total Cashflow</th>
<th>Realized Cashflow</th>
<th>Projected Cashflow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-596.54</td>
<td>-69.81</td>
<td>-526.73</td>
</tr>
</tbody>
</table>

Graph:

- Y-axis: Euribor (3M %)
- X-axis: Year (2008 to 2020)
- Data points from 2008 to 2020
- Projected Cashflow from 2008 to 2020

Cashflow chart:

- Y-axis: Cashflow
- X-axis: Year (2008 to 2020)
Conclusion

- Quantitative finance is fraught with misconceptions
- Some lead to disastrous actions
- Derivatives often bought and sold for wrong reasons
- A lot of pricing, not much hedge, very little purpose
- Education and tools badly needed