Optimal Execution with Dynamic Order Flow Imbalance

Kyle Bechler

UC Santa Barbara

WCMF
September 27, 2014
joint w/Mike Ludkovski
Outline

1. Order Flow
2. Dynamic Order Flow Model
3. Two-Step Approximation
4. Numerical Illustrations
Tale of Two Costs

When executing a large order in an electronic market, there are two primary concerns:

1. Price Impact
 - Spatial effect: consume liquidity in terms of standing limit orders
 - “Walking through the book” – receive worse price than current best bid/ask
Tale of Two Costs

When executing a large order in an electronic market, there are two primary concerns:

1. **Price Impact**
 - **Spatial** effect: consume liquidity in terms of standing limit orders
 - “Walking through the book” – receive worse price than current best bid/ask

2. **Information Leakage**
 - **Temporal** effect: executed trade appears on the order tape
 - Other traders react and adjust their behavior (eg “front-running”) – will receive worse price in the future
Price Impact
Example: A large market SELL order,
- The order will first deplete standing limit buy orders at bid price and then move to next best level, lowering execution price
- Price impact depends on the shape of the LOB
- A well studied problem
 - Flat (constant depth) LOB → linear price impact
 - Flat LOB → quadratic instantaneous execution cost

![Price Impact Diagram 1](image1.png)

![Price Impact Diagram 2](image2.png)
Information Leakage

- Longer term impact causing others to behave differently (i.e., permanent market impact)
- Once other traders are aware of somebody selling, they will take advantage
- Adverse selection, predatory trading, etc.
- Algorithm should do the following:
 - Attempt to hide overall intentions
 - Consider the state of the liquidity provision process
Information Leakage

- Longer term impact causing others to behave differently (i.e., permanent market impact)
- Once other traders are aware of somebody selling, they will take advantage
- Adverse selection, predatory trading, etc.
- Algorithm should do the following:
 - Attempt to hide overall intentions
 - Consider the state of the liquidity provision process
- Information cost requires looking at time series of orders
Order Flow

- Participants fear that other traders are better informed
 - When order flow is toxic market makers provide less liquidity
- Toxicity is about the ratio of noise/informed traders, aka flow imbalance (NOT the same as static/volume LOB order imbalance)
- Not directly observable, and not obvious how to measure

- VPIN has a complicated way of classifying trades as buys/sells. Not suitable for LOB data
- Claim: MMs widen spreads in response to toxic flow

FinMath: Cartea, Jaimungal, Ricci (2011)

- Short term price drift driven by market order arrivals
- Result: MMs shift order placement when market order flow is one-sided
Order Flow

- Participants fear that other traders are better informed
 ⇒ When order flow is toxic market makers provide less liquidity
- Toxicity is about the ratio of noise/informed traders, aka flow imbalance (NOT the same as static/volume LOB order imbalance)
- Not directly observable, and not obvious how to measure
 ▶ VPIN has a complicated way of classifying trades as buys/sells. Not suitable for LOB data
 ▶ Claim: MMs widen spreads in response to toxic flow
Order Flow

- Participants fear that other traders are better informed
 ➞ When order flow is toxic market makers provide less liquidity
- Toxicity is about the ratio of noise/informed traders, aka flow imbalance (NOT the same as static/volume LOB order imbalance)
- Not directly observable, and not obvious how to measure
 - VPIN has a complicated way of classifying trades as buys/sells. Not suitable for LOB data
 - Claim: MMs widen spreads in response to toxic flow
- FinMath: Cartea, Jaimungal, Ricci (2011)
 - Short term price drift driven by market order arrivals
 - Result: MMs shift order placement when market order flow is one-sided
Waves of Coca Cola

Figure: Intra-day Coca-Cola Stock Price on NYSE on July 19, 2012
Direction

- **ELO12**: Flow imbalance, info leakage and optimal horizon
 - Static, one-period model
Direction

- **ELO12**: Flow imbalance, info leakage and optimal horizon
 - Static, one-period model
- Aim: Incorporate concepts in a dynamic optimal execution framework
Direction

- **ELO12**: Flow imbalance, info leakage and optimal horizon
 - Static, one-period model
- Aim: Incorporate concepts in a dynamic optimal execution framework
 - Continuous trading rates (Almgren-Chriss,...)
 - Assume a parametric form for inventory risk (A-C, Gatheral-Schied)
 - No fill risk (in contrast to Cartea & Jaimungal, Gueant et al, Bayraktar-L, ...)
 - Treat only market orders (in the future: hybrid models like in Guilbaud & Pham, Carmona & Webster, ...)
 - (Order book resilience (Obizhaeva & Wang, Alfonsi et al))
 - (Empirical evidence: Farmer, Bouchaud, ...)

Bechler
Execution & Order Flow
Contributions

- Introduce order flow imbalance as a state variable
- Suggest a simple mechanism for informational costs (inspired by ELO12) – temporal impact beyond usual spatial impact
- Endogenize the execution horizon T
- Derive closed-form approximate strategies for the resulting optimization problem
Execution Model

- Inventory x_t: liquidate x_0
- $t \mapsto x_t$ is absolutely continuous; trading rate is α_t
- $dx_t = -\alpha_t dt$
- Unaffected price S_t: martingale
Execution Model

- Inventory x_t: liquidate x_0
- $t \mapsto x_t$ is absolutely continuous; trading rate is α_t
- $dx_t = -\alpha_t \, dt$
- Unaffected price S_t: martingale
- Order flow imbalance Y_t
 - $Y_t > 0$: buyers-market; $Y_t < 0$: sellers market
- Main desired features:
 - Mean-reverting to zero
 - Stationary in long-run
 - Affected by execution algorithms
Unaffected order flow: \(dY_t^0 = -\beta Y_t^0 dt + \sigma dW_t \)

With execution:

\[
dY_t = (-\beta Y_t - \phi(\alpha_t)) dt + \sigma dW_t
\]

i.e. \(Y_t = Y_t^0 + \int_0^t e^{-\beta(t-s)} \alpha_s ds \)

Typical cases:

- \(\phi(\alpha) = \phi_t \) (deterministic information cost)
- \(\phi(\alpha) = \eta \alpha \) (linear in trading rate)

Assume that flow is independent of price (empirical relationship is not clear) - more on this later
Optimization Problem

- **Objective:** \(v(x, y) := \inf_{\alpha \in A} \mathbb{E}_{x,y} \left[\int_0^{T_0} g(\alpha_s) + \lambda(x_s) + \kappa Y_s^2 \, ds \right] \)

- **Realized horizon** \(T_0 := \inf \{ t : x_t^\alpha = 0 \} \) – endogenous to the strategy \(\alpha \)
Optimization Problem

- **Objective:** \(v(x, y) := \inf_{\alpha \in A} \mathbb{E}_{x,y} \left[\int_{0}^{T_0} g(\alpha_s) + \lambda(x_s) + \kappa Y_s^2 \, ds \right] \)

- **Realized horizon** \(T_0 := \inf\{ t : x_t^\alpha = 0 \} \) – endogenous to the strategy \(\alpha \)

- \(g(\alpha) \): price impact

- \(g(\alpha) = \alpha^2 \) (constant-depth LOB)
Optimization Problem

- Objective: \(v(x, y) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}_{x,y} \left[\int_0^{T_0} g(\alpha_s) + \lambda(x_s) + \kappa Y_s^2 \, ds \right] \)
- Realized horizon \(T_0 := \inf\{ t : x_t^\alpha = 0 \} \) – endogenous to the strategy \(\alpha \)
- \(g(\alpha) \): price impact
- \(g(\alpha) = \alpha^2 \) (constant-depth LOB)
- \(\lambda(x) \): inventory risk
- \(\lambda(x) = cx^2 \) (Almgren-Chriss criterion) / \(\lambda(x) = cx \) (similar to Gatheral-Schied)
Optimization Problem

- Objective: \(v(x, y) := \inf_{\alpha \in \mathcal{A}} \mathbb{E}_{x,y} \left[\int_0^{T_0} g(\alpha_s) + \lambda(x_s) + \kappa Y_s^2 ds \right] \)
- Realized horizon \(T_0 := \inf \{ t : x_t^\alpha = 0 \} \) – endogenous to the strategy \(\alpha \)
- \(g(\alpha) \): price impact
- \(g(\alpha) = \alpha^2 \) (constant-depth LOB)
- \(\lambda(x) \): inventory risk
- \(\lambda(x) = cx^2 \) (Almgren-Chriss criterion) / \(\lambda(x) = cx \) (similar to Gatheral-Schied)
- \(\kappa Y^2 \): information cost
- Unbalanced order flow: Higher liquidity costs
HJB Equation

0 = −β Yν_ν_Y + \frac{1}{2} \sigma^2 ν_ν_ν_Y + \inf_{\alpha \geq 0} \{g(\alpha) - \alpha ν_X - \phi(\alpha) ν_Y\} + \kappa Y^2 + \lambda(x)

- Finite-fuel boundary condition: ν(0, y) = 0 for all y
- **Nonlinear parabolic PDE**
- Hard to understand the structure
- Positivity constraint on α is challenging
HJB Equation

\[0 = -\beta Y v_Y + \frac{1}{2} \sigma^2 v_{YY} + \inf_{\alpha \geq 0} \{ g(\alpha) - \alpha v_x - \phi(\alpha) v_Y \} + \kappa Y^2 + \lambda(x) \]

Finite-fuel boundary condition: \(v(0, y) = 0 \) for all \(y \)

Nonlinear parabolic PDE

Hard to understand the structure

Positivity constraint on \(\alpha \) is challenging

To gain insights: build approximating problems by

(i) solving the fixed-horizon problem

(ii) optimizing over \(T \)
Fixed Horizon Problem

\[u(T, x, y) = \inf_{(\alpha_t) \in A(T,x)} \mathbb{E}_{x,y} \left[\int_0^T \alpha_s^2 + \lambda(x_s^\alpha) + \kappa y_s^2 \, ds \right] \]

HJB equation becomes

\[u_T = \frac{1}{2} \sigma^2 u_{yy} + \kappa y^2 + \lambda(x) - \beta y u_y + \inf_{\alpha} \left\{ \alpha^2 - \alpha u_x - \eta \alpha u_y \right\} \] (1)

Singular boundary condition: \(\lim_{T \downarrow 0} u(T, x, y) = \infty \) if \(x \neq 0 \)

Proposition

The solution of (1) has the form

\[u(T, x, y) = x^2 A(T) + y^2 B(T) + xyC(T) + D(T), \] (2)

where \(A, B, C, D \) solve a matrix Riccati ordinary differential equation.

Note: Riccati equations parameterized in terms of time-to-maturity \(\tau \)
Execution Speed

- The corresponding optimal rate of liquidation is

$$\alpha_t^D = \frac{x_t(2A(\tau) + \eta C(\tau)) + Y_t(C(\tau) + 2\eta B(\tau))}{2}.$$

- Execution rate is linear in x_t and in Y_t (generalizes Almgren-Chriss)

- The Proposition only treats the unconstrained case $\alpha \in \mathbb{R}$: if T is large relative to x_0 or Y_t is negative enough then $\alpha^D < 0$

- As $t \to T$, the dynamic trading rate stabilizes, resembling a VWAP strategy.
Myopic Strategies \((\phi(\alpha) = \phi_t) \)

- Suppose agent myopically optimizes only against price impact:
 \[
u^M(T, x, y) := \inf_{x_t} \left(\int_0^T \dot{x}_s^2 + \lambda(x_s) ds \right) + \int_0^T \kappa E_y [Y_s^2] ds =: \mathcal{I} + \mathcal{O}\]

- If \(\lambda(x) = cx^2 \) solution is
 \[
 \begin{cases}
 x_t^{MH} = \frac{x \sinh(\sqrt{c}(T - t))}{\sinh(\sqrt{c}T)} \\
 \alpha_t^{MH} = \frac{\sqrt{cx} \cosh(\sqrt{c}(T - t))}{\sinh(\sqrt{c}T)}
 \end{cases}
 \]

- Now \(\phi_t = \eta \alpha_t^{MH} \) is the above deterministic function of \(t \rightarrow Y_t \) is Gaussian with known moments

- \(\mathcal{I}^{MH}(T, x) = \sqrt{cx^2} \coth(\sqrt{c}T) \)

- \(\mathcal{O}^{MH}(T, x, y) = \kappa \int_0^T \left(ye^{-\beta t} - \int_0^t e^{-\beta(t-s)} \eta \alpha_s^{MH} ds \right)^2 + \frac{\sigma^2}{2\beta} \left(1 - e^{-2\beta t} \right) dt \)
Myopic Strategies \((\phi(\alpha) = \phi_t)\)

- Suppose agent myopically optimizes only against price impact:

 \[
 u^M(T, x, y) := \inf_{(x_t)} \left(\int_0^T \dot{x}_s^2 + \lambda(x_s)ds \right) + \int_0^T \kappa \mathbb{E}_y[Y_s^2]ds =: I + O
 \]

- If \(\lambda(x) = cx^2\) solution is
 \[
 \begin{align*}
 x_t^{MH} &= \frac{x \sinh(\sqrt{c}(T - t))}{\sinh(\sqrt{c}T)} \\
 \alpha_t^{MH} &= \frac{\sqrt{cx} \cosh(\sqrt{c}(T - t))}{\sinh(\sqrt{c}T)}
 \end{align*}
 \]

- Now \(\phi_t = \eta\alpha_t^{MH}\) is the above deterministic function of \(t \rightarrow Y_t\) is Gaussian with known moments

\[
I^{MH}(T, x) = \sqrt{cx^2} \coth(\sqrt{c}T)
\]

\[
O^{MH}(T, x, y) = \kappa \int_0^T \left(ye^{-\beta t} - \int_0^t e^{-\beta(t-s)} \eta\alpha_s^{MH} \, ds \right)^2 + \frac{\sigma^2}{2\beta} \left(1 - e^{-2\beta t} \right) dt
\]

- Similarly have closed-form expressions for cases \(\lambda(x) = cx\) (Quadratic) and \(\lambda(x) = 0\) (VWAP)

- Next step: Take existing closed-form expressions \(u^M\) and optimize over \(T\)
Optimizing the Horizon

- \(T^* = \arg \min_T u(T, x, y) \)
- Lemma: \(T^* \in (0, \infty) \) (closed-form for \(T \mapsto u(T, x, y) \))
- Open-loop (static): find \(T^* \) at the outset and implement \(\alpha_t(T^*(x, y), x_t, Y_t) \)

Realized horizon \(T_0(x, y) \) becomes random

Dynamically recomputing \(T^* \) - adapt to changing \(Y_t \) without the indefinite horizon finite-fuel problem

Next up: we show these are in fact good approximations!
Optimizing the Horizon

- \(T^* = \arg \min_T u(T, x, y) \)
- Lemma: \(T^* \in (0, \infty) \) (closed-form for \(T \mapsto u(T, x, y) \))
- Open-loop (static): find \(T^* \) at the outset and implement \(\alpha_t(T^*(x, y), x_t, Y_t) \)
- Closed-loop (dynamic): continuously recompute \(T^* \):
 \[
 \tilde{\alpha}_t^M(x, y) := \alpha^M(T^*(x_t, Y_t), x_t, Y_t)
 \]
- Realized horizon \(T_0(x, y) \) becomes random
- Dynamically recomputing \(T^* \) - adapt to changing \(Y_t \) without the indefinite horizon finite-fuel problem

Next up: we show these are in fact good approximations!
Comparison of costs

<table>
<thead>
<tr>
<th></th>
<th>(\nu)</th>
<th>(\tilde{\nu}^D)</th>
<th>(\tilde{\nu}^{ML})</th>
<th>(u^D)</th>
<th>(u^{ML})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{E}[J(\alpha)])</td>
<td>4.257</td>
<td>4.264</td>
<td>4.317</td>
<td>4.483</td>
<td>4.547</td>
</tr>
<tr>
<td>(SD(J(\alpha)))</td>
<td>1.50</td>
<td>1.45</td>
<td>1.39</td>
<td>1.77</td>
<td>1.84</td>
</tr>
<tr>
<td>(\mathbb{E}[T_0])</td>
<td>3.87</td>
<td>3.70</td>
<td>3.48</td>
<td>3.43</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Legend:
- \(\nu \): directly from the HJB pde (fully numerical)
- \(\tilde{\nu} \): closed-loop optimization of \(T^* \); \(T_0 \) is random
- \(u(T^*, x, y) \): static optimization \(T_0 = T^* \)
- \(u_t^{ML} = x / T \) (VWAP)
- \(u_t^D \) based on Proposition 1 (matrix \textbf{Riccati} equations)
Figure: Comparison of trading rates (α_t) for each of six strategies given the shown simulated path of (Y_t^0) (The realized (Y_t) depends on the strategy chosen).
Figure: Top: 200 simulated trajectories from strategy $\tilde{\alpha}_t^D$. Highlighted are three trajectories resulting from different Y_t-paths. Bottom: Corresponding realizations of $t \mapsto Y_t$.
More on Static T^* (Optimal Execution Horizon by ELO12)

- ELO12 (essentially) considered $\min_{T \geq 0} \{\mathbb{E}_{x, y} \left[|Y_T^\alpha| \right] + c\sqrt{T}\}$
- myopic trading based on constant participation strategy $\alpha_t = x/T$; explicit timing costs (rather than inventory risk)
- Only terminal information costs $|Y_T|
- Discuss the statistically optimized T^* above
- Our setup is effectively a dynamic extension of the above one-period model
Work in Progress

- **Empirical** measurement of order flow and its stylized features
- At what **time-scale** is order flow imbalance to be measured?
- Perhaps information leakage $\phi(\alpha)$ depends on Y_t?
- Consider **correlated** S_t and Y_t
Work in Progress

- **Empirical** measurement of order flow and its stylized features
- At what **time-scale** is order flow imbalance to be measured?
- Perhaps information leakage $\phi(\alpha)$ depends on Y_t?
- Consider correlated S_t and Y_t

Thank You!
Empirical Executed Order Flow

Figure: The EWMA order flow imbalance metric for Teva Pharmaceutical (ticker: TEVA) for a single day 5/3/2011.
References

R. Cont, A. Kukanov and S. Stoikov
The price impact of order book events

D. Easley, M. López de Prado and M. O’Hara
Flow Toxicity and Liquidity in a High Frequency World

D. Easley, M. López de Prado and M. O’Hara
Optimal Execution Horizon

J. Gatheral and A. Schied
Dynamical models of market impact and algorithms for order execution

A. Cartea, S. Jaimungal and J. Ricci
Buy low sell high: a high frequency trading perspective